Basic equivalence relation for regaccess structures.
Function:
(defun regaccess-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (regaccessp acl2::x) (regaccessp acl2::y)))) (equal (regaccess-fix acl2::x) (regaccess-fix acl2::y)))
Theorem:
(defthm regaccess-equiv-is-an-equivalence (and (booleanp (regaccess-equiv x y)) (regaccess-equiv x x) (implies (regaccess-equiv x y) (regaccess-equiv y x)) (implies (and (regaccess-equiv x y) (regaccess-equiv y z)) (regaccess-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm regaccess-equiv-implies-equal-regaccess-fix-1 (implies (regaccess-equiv acl2::x x-equiv) (equal (regaccess-fix acl2::x) (regaccess-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm regaccess-fix-under-regaccess-equiv (regaccess-equiv (regaccess-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-regaccess-fix-1-forward-to-regaccess-equiv (implies (equal (regaccess-fix acl2::x) acl2::y) (regaccess-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-regaccess-fix-2-forward-to-regaccess-equiv (implies (equal acl2::x (regaccess-fix acl2::y)) (regaccess-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm regaccess-equiv-of-regaccess-fix-1-forward (implies (regaccess-equiv (regaccess-fix acl2::x) acl2::y) (regaccess-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm regaccess-equiv-of-regaccess-fix-2-forward (implies (regaccess-equiv acl2::x (regaccess-fix acl2::y)) (regaccess-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)