• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Pfcs
      • Wp-gen
      • Dimacs-reader
      • Legacy-defrstobj
      • Proof-checker-array
      • Soft
      • C
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
      • Sidekick
      • Leftist-trees
      • Java
      • Taspi
      • Riscv
      • Bitcoin
      • Des
      • Ethereum
      • X86isa
      • Sha-2
      • Yul
      • Zcash
      • Proof-checker-itp13
      • Regex
      • ACL2-programming-language
      • Json
      • Jfkr
      • Equational
      • Cryptography
      • Poseidon
      • Where-do-i-place-my-book
      • Axe
      • Aleo
        • Aleobft
        • Aleovm
          • Circuits
          • Language
            • Grammar
            • Early-version
              • Abstract-syntax
                • Binary-op
                • Literal
                  • Literal-fix
                    • Literal-case
                    • Literalp
                    • Literal-equiv
                    • Literal-unsigned
                    • Literal-signed
                    • Literal-string
                    • Literal-scalar
                    • Literal-group
                    • Literal-field
                    • Literal-boolean
                    • Literal-address
                    • Literal-kind
                  • Instruction
                  • Hash-op
                  • Literal-type
                  • Operand
                  • Unary-op
                  • Identifier
                  • Commit-op
                  • Mapping
                  • Function
                  • Programdef
                  • Finalize-type
                  • Closure
                  • Register-type
                  • Finalizer
                  • Value-type
                  • Record-type
                  • Command
                  • Plaintext-type
                  • Finalization-option
                  • Visibility
                  • Register
                  • Reference
                  • Programid
                  • Locator
                  • Finalization
                  • Entry-type
                  • Regaccess
                  • Program
                  • Interface-type
                  • Ident+ptype
                  • Ident+etype
                  • Function-output
                  • Finalize-output
                  • Finalize-input
                  • Closure-output
                  • Closure-input
                  • Assert-op
                  • Function-input
                  • Equal-op
                  • Finalize-command
                  • Ternary-op
                  • Import
                  • Ident+ptype-list
                  • Operand-list
                  • Ident+etype-list
                  • Programdef-list
                  • Instruction-list
                  • Import-list
                  • Identifier-list
                  • Function-output-list
                  • Function-input-list
                  • Finalize-output-list
                  • Finalize-input-list
                  • Command-list
                  • Closure-output-list
                  • Closure-input-list
                • Parser
                • Concrete-syntax
              • Concrete-syntax
          • Leo
        • Bigmems
        • Builtins
        • Execloader
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Community
      • Proof-automation
      • ACL2
      • Macro-libraries
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Literal

    Literal-fix

    Fixing function for literal structures.

    Signature
    (literal-fix x) → new-x
    Arguments
    x — Guard (literalp x).
    Returns
    new-x — Type (literalp new-x).

    Definitions and Theorems

    Function: literal-fix$inline

    (defun literal-fix$inline (x)
     (declare (xargs :guard (literalp x)))
     (let ((__function__ 'literal-fix))
      (declare (ignorable __function__))
      (mbe
       :logic
       (case (literal-kind x)
        (:boolean (b* ((value (acl2::bool-fix (std::da-nth 0 (cdr x)))))
                    (cons :boolean (list value))))
        (:unsigned
           (b* ((value (ifix (std::da-nth 0 (cdr x))))
                (size (leo-early::bitsize-fix (std::da-nth 1 (cdr x)))))
             (cons :unsigned (list value size))))
        (:signed
           (b* ((value (ifix (std::da-nth 0 (cdr x))))
                (size (leo-early::bitsize-fix (std::da-nth 1 (cdr x)))))
             (cons :signed (list value size))))
        (:field (b* ((value (ifix (std::da-nth 0 (cdr x)))))
                  (cons :field (list value))))
        (:group (b* ((value (ifix (std::da-nth 0 (cdr x)))))
                  (cons :group (list value))))
        (:scalar (b* ((value (ifix (std::da-nth 0 (cdr x)))))
                   (cons :scalar (list value))))
        (:address
          (b* ((value (leo-early::address-fix (std::da-nth 0 (cdr x)))))
            (cons :address (list value))))
        (:string
          (b*
            ((value (leo-early::char-list-fix (std::da-nth 0 (cdr x)))))
            (cons :string (list value)))))
       :exec x)))

    Theorem: literalp-of-literal-fix

    (defthm literalp-of-literal-fix
      (b* ((new-x (literal-fix$inline x)))
        (literalp new-x))
      :rule-classes :rewrite)

    Theorem: literal-fix-when-literalp

    (defthm literal-fix-when-literalp
      (implies (literalp x)
               (equal (literal-fix x) x)))

    Function: literal-equiv$inline

    (defun literal-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (literalp acl2::x)
                                  (literalp acl2::y))))
      (equal (literal-fix acl2::x)
             (literal-fix acl2::y)))

    Theorem: literal-equiv-is-an-equivalence

    (defthm literal-equiv-is-an-equivalence
      (and (booleanp (literal-equiv x y))
           (literal-equiv x x)
           (implies (literal-equiv x y)
                    (literal-equiv y x))
           (implies (and (literal-equiv x y)
                         (literal-equiv y z))
                    (literal-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: literal-equiv-implies-equal-literal-fix-1

    (defthm literal-equiv-implies-equal-literal-fix-1
      (implies (literal-equiv acl2::x x-equiv)
               (equal (literal-fix acl2::x)
                      (literal-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: literal-fix-under-literal-equiv

    (defthm literal-fix-under-literal-equiv
      (literal-equiv (literal-fix acl2::x)
                     acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-literal-fix-1-forward-to-literal-equiv

    (defthm equal-of-literal-fix-1-forward-to-literal-equiv
      (implies (equal (literal-fix acl2::x) acl2::y)
               (literal-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-literal-fix-2-forward-to-literal-equiv

    (defthm equal-of-literal-fix-2-forward-to-literal-equiv
      (implies (equal acl2::x (literal-fix acl2::y))
               (literal-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: literal-equiv-of-literal-fix-1-forward

    (defthm literal-equiv-of-literal-fix-1-forward
      (implies (literal-equiv (literal-fix acl2::x)
                              acl2::y)
               (literal-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: literal-equiv-of-literal-fix-2-forward

    (defthm literal-equiv-of-literal-fix-2-forward
      (implies (literal-equiv acl2::x (literal-fix acl2::y))
               (literal-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: literal-kind$inline-of-literal-fix-x

    (defthm literal-kind$inline-of-literal-fix-x
      (equal (literal-kind$inline (literal-fix x))
             (literal-kind$inline x)))

    Theorem: literal-kind$inline-literal-equiv-congruence-on-x

    (defthm literal-kind$inline-literal-equiv-congruence-on-x
      (implies (literal-equiv x x-equiv)
               (equal (literal-kind$inline x)
                      (literal-kind$inline x-equiv)))
      :rule-classes :congruence)

    Theorem: consp-of-literal-fix

    (defthm consp-of-literal-fix
      (consp (literal-fix x))
      :rule-classes :type-prescription)