Basic equivalence relation for instruction structures.
Function:
(defun instruction-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (instructionp acl2::x) (instructionp acl2::y)))) (equal (instruction-fix acl2::x) (instruction-fix acl2::y)))
Theorem:
(defthm instruction-equiv-is-an-equivalence (and (booleanp (instruction-equiv x y)) (instruction-equiv x x) (implies (instruction-equiv x y) (instruction-equiv y x)) (implies (and (instruction-equiv x y) (instruction-equiv y z)) (instruction-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm instruction-equiv-implies-equal-instruction-fix-1 (implies (instruction-equiv acl2::x x-equiv) (equal (instruction-fix acl2::x) (instruction-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm instruction-fix-under-instruction-equiv (instruction-equiv (instruction-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-instruction-fix-1-forward-to-instruction-equiv (implies (equal (instruction-fix acl2::x) acl2::y) (instruction-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-instruction-fix-2-forward-to-instruction-equiv (implies (equal acl2::x (instruction-fix acl2::y)) (instruction-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm instruction-equiv-of-instruction-fix-1-forward (implies (instruction-equiv (instruction-fix acl2::x) acl2::y) (instruction-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm instruction-equiv-of-instruction-fix-2-forward (implies (instruction-equiv acl2::x (instruction-fix acl2::y)) (instruction-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)