Recognizer for hash-op structures.
(hash-opp x) → *
Function:
(defun hash-opp (x) (declare (xargs :guard t)) (let ((__function__ 'hash-opp)) (declare (ignorable __function__)) (and (consp x) (cond ((or (atom x) (eq (car x) :hash.bhp256)) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :hash.bhp512) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :hash.bhp768) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :hash.bhp1024) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :hash.ped64) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :hash.ped128) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :hash.psd2) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :hash.psd4) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) (t (and (eq (car x) :hash.psd8) (and (true-listp (cdr x)) (eql (len (cdr x)) 0)) (b* nil t)))))))
Theorem:
(defthm consp-when-hash-opp (implies (hash-opp x) (consp x)) :rule-classes :compound-recognizer)