Basic equivalence relation for operand structures.
Function:
(defun operand-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (operandp acl2::x) (operandp acl2::y)))) (equal (operand-fix acl2::x) (operand-fix acl2::y)))
Theorem:
(defthm operand-equiv-is-an-equivalence (and (booleanp (operand-equiv x y)) (operand-equiv x x) (implies (operand-equiv x y) (operand-equiv y x)) (implies (and (operand-equiv x y) (operand-equiv y z)) (operand-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm operand-equiv-implies-equal-operand-fix-1 (implies (operand-equiv acl2::x x-equiv) (equal (operand-fix acl2::x) (operand-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm operand-fix-under-operand-equiv (operand-equiv (operand-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-operand-fix-1-forward-to-operand-equiv (implies (equal (operand-fix acl2::x) acl2::y) (operand-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-operand-fix-2-forward-to-operand-equiv (implies (equal acl2::x (operand-fix acl2::y)) (operand-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm operand-equiv-of-operand-fix-1-forward (implies (operand-equiv (operand-fix acl2::x) acl2::y) (operand-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm operand-equiv-of-operand-fix-2-forward (implies (operand-equiv acl2::x (operand-fix acl2::y)) (operand-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)