• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Pfcs
      • Wp-gen
      • Dimacs-reader
      • Legacy-defrstobj
      • Proof-checker-array
      • Soft
      • C
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
      • Sidekick
      • Leftist-trees
      • Java
      • Taspi
      • Riscv
      • Bitcoin
      • Des
      • Ethereum
      • X86isa
      • Sha-2
      • Yul
      • Zcash
      • Proof-checker-itp13
      • Regex
      • ACL2-programming-language
        • Primitive-functions
        • Translated-terms
        • Values
        • Evaluation
        • Program-equivalence
        • Functions
        • Packages
        • Programs
        • Interpreter
        • Evaluation-states
          • Eval-state
          • Frame
          • Binding
            • Binding-fix
              • Bindingp
              • Binding-equiv
            • Stack
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Aleo
        • Bigmems
        • Builtins
        • Execloader
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Community
      • Proof-automation
      • ACL2
      • Macro-libraries
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Binding

    Binding-fix

    (binding-fix x) is a usual ACL2::fty omap fixing function.

    Signature
    (binding-fix x) → *
    Arguments
    x — Guard (bindingp x).

    Definitions and Theorems

    Function: binding-fix

    (defun binding-fix (x)
      (declare (xargs :guard (bindingp x)))
      (mbe :logic (if (bindingp x) x nil)
           :exec x))

    Theorem: bindingp-of-binding-fix

    (defthm bindingp-of-binding-fix
      (bindingp (binding-fix x)))

    Theorem: binding-fix-when-bindingp

    (defthm binding-fix-when-bindingp
      (implies (bindingp x)
               (equal (binding-fix x) x)))

    Theorem: emptyp-binding-fix

    (defthm emptyp-binding-fix
      (implies (or (omap::emptyp x) (not (bindingp x)))
               (omap::emptyp (binding-fix x))))

    Theorem: emptyp-of-binding-fix-to-not-binding-or-emptyp

    (defthm emptyp-of-binding-fix-to-not-binding-or-emptyp
      (equal (omap::emptyp (binding-fix x))
             (or (not (bindingp x))
                 (omap::emptyp x))))

    Function: binding-equiv$inline

    (defun binding-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (bindingp acl2::x)
                                  (bindingp acl2::y))))
      (equal (binding-fix acl2::x)
             (binding-fix acl2::y)))

    Theorem: binding-equiv-is-an-equivalence

    (defthm binding-equiv-is-an-equivalence
      (and (booleanp (binding-equiv x y))
           (binding-equiv x x)
           (implies (binding-equiv x y)
                    (binding-equiv y x))
           (implies (and (binding-equiv x y)
                         (binding-equiv y z))
                    (binding-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: binding-equiv-implies-equal-binding-fix-1

    (defthm binding-equiv-implies-equal-binding-fix-1
      (implies (binding-equiv acl2::x x-equiv)
               (equal (binding-fix acl2::x)
                      (binding-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: binding-fix-under-binding-equiv

    (defthm binding-fix-under-binding-equiv
      (binding-equiv (binding-fix acl2::x)
                     acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-binding-fix-1-forward-to-binding-equiv

    (defthm equal-of-binding-fix-1-forward-to-binding-equiv
      (implies (equal (binding-fix acl2::x) acl2::y)
               (binding-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-binding-fix-2-forward-to-binding-equiv

    (defthm equal-of-binding-fix-2-forward-to-binding-equiv
      (implies (equal acl2::x (binding-fix acl2::y))
               (binding-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: binding-equiv-of-binding-fix-1-forward

    (defthm binding-equiv-of-binding-fix-1-forward
      (implies (binding-equiv (binding-fix acl2::x)
                              acl2::y)
               (binding-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: binding-equiv-of-binding-fix-2-forward

    (defthm binding-equiv-of-binding-fix-2-forward
      (implies (binding-equiv acl2::x (binding-fix acl2::y))
               (binding-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)