Lifting of the circuit to a predicate.
Function:
(defun field-sub-pred (x y z prime) (and (equal (pfield::mul (pfield::sub x y prime) (mod 1 prime) prime) z)))
Theorem:
(defthm definition-satp-to-field-sub-pred (implies (and (equal (pfcs::lookup-definition '(:simple "field_sub") pfcs::defs) '(:definition (name :simple "field_sub") (pfcs::para (:simple "x") (:simple "y") (:simple "z")) (pfcs::body (:equal (:mul (:sub (:var (:simple "x")) (:var (:simple "y"))) (:const 1)) (:var (:simple "z")))))) (pfield::fep x prime) (pfield::fep y prime) (pfield::fep z prime) (primep prime)) (equal (pfcs::definition-satp '(:simple "field_sub") pfcs::defs (list x y z) prime) (field-sub-pred x y z prime))))