• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Pfcs
      • Wp-gen
      • Dimacs-reader
      • Legacy-defrstobj
      • Proof-checker-array
      • Soft
      • C
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
      • Sidekick
      • Leftist-trees
      • Java
      • Taspi
      • Riscv
      • Bitcoin
      • Des
      • Ethereum
      • X86isa
      • Sha-2
      • Yul
      • Zcash
      • Proof-checker-itp13
      • Regex
      • ACL2-programming-language
        • Primitive-functions
        • Translated-terms
        • Values
        • Evaluation
        • Program-equivalence
        • Functions
        • Packages
        • Programs
        • Interpreter
        • Evaluation-states
          • Eval-state
            • Eval-state-fix
              • Eval-state-case
              • Eval-state-p
              • Eval-state-equiv
              • Eval-state-init
              • Eval-state-trans
              • Eval-state-final
              • Eval-state-kind
              • Eval-state-error
            • Frame
            • Binding
            • Stack
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Aleo
        • Bigmems
        • Builtins
        • Execloader
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Community
      • Proof-automation
      • ACL2
      • Macro-libraries
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Eval-state

    Eval-state-fix

    Fixing function for eval-state structures.

    Signature
    (eval-state-fix x) → new-x
    Arguments
    x — Guard (eval-state-p x).
    Returns
    new-x — Type (eval-state-p new-x).

    Definitions and Theorems

    Function: eval-state-fix$inline

    (defun eval-state-fix$inline (x)
     (declare (xargs :guard (eval-state-p x)))
     (let ((__function__ 'eval-state-fix))
      (declare (ignorable __function__))
      (mbe
       :logic
       (case (eval-state-kind x)
         (:init
              (b* ((function (symbol-value-fix (std::da-nth 0 (cdr x))))
                   (arguments (value-list-fix (std::da-nth 1 (cdr x)))))
                (cons :init (list function arguments))))
         (:trans (b* ((stack (stack-fix (std::da-nth 0 (cdr x)))))
                   (cons :trans (list stack))))
         (:final (b* ((result (value-fix (std::da-nth 0 (cdr x)))))
                   (cons :final (list result))))
         (:error (cons :error (list))))
       :exec x)))

    Theorem: eval-state-p-of-eval-state-fix

    (defthm eval-state-p-of-eval-state-fix
      (b* ((new-x (eval-state-fix$inline x)))
        (eval-state-p new-x))
      :rule-classes :rewrite)

    Theorem: eval-state-fix-when-eval-state-p

    (defthm eval-state-fix-when-eval-state-p
      (implies (eval-state-p x)
               (equal (eval-state-fix x) x)))

    Function: eval-state-equiv$inline

    (defun eval-state-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (eval-state-p acl2::x)
                                  (eval-state-p acl2::y))))
      (equal (eval-state-fix acl2::x)
             (eval-state-fix acl2::y)))

    Theorem: eval-state-equiv-is-an-equivalence

    (defthm eval-state-equiv-is-an-equivalence
      (and (booleanp (eval-state-equiv x y))
           (eval-state-equiv x x)
           (implies (eval-state-equiv x y)
                    (eval-state-equiv y x))
           (implies (and (eval-state-equiv x y)
                         (eval-state-equiv y z))
                    (eval-state-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: eval-state-equiv-implies-equal-eval-state-fix-1

    (defthm eval-state-equiv-implies-equal-eval-state-fix-1
      (implies (eval-state-equiv acl2::x x-equiv)
               (equal (eval-state-fix acl2::x)
                      (eval-state-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: eval-state-fix-under-eval-state-equiv

    (defthm eval-state-fix-under-eval-state-equiv
      (eval-state-equiv (eval-state-fix acl2::x)
                        acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-eval-state-fix-1-forward-to-eval-state-equiv

    (defthm equal-of-eval-state-fix-1-forward-to-eval-state-equiv
      (implies (equal (eval-state-fix acl2::x) acl2::y)
               (eval-state-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-eval-state-fix-2-forward-to-eval-state-equiv

    (defthm equal-of-eval-state-fix-2-forward-to-eval-state-equiv
      (implies (equal acl2::x (eval-state-fix acl2::y))
               (eval-state-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: eval-state-equiv-of-eval-state-fix-1-forward

    (defthm eval-state-equiv-of-eval-state-fix-1-forward
      (implies (eval-state-equiv (eval-state-fix acl2::x)
                                 acl2::y)
               (eval-state-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: eval-state-equiv-of-eval-state-fix-2-forward

    (defthm eval-state-equiv-of-eval-state-fix-2-forward
      (implies (eval-state-equiv acl2::x (eval-state-fix acl2::y))
               (eval-state-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: eval-state-kind$inline-of-eval-state-fix-x

    (defthm eval-state-kind$inline-of-eval-state-fix-x
      (equal (eval-state-kind$inline (eval-state-fix x))
             (eval-state-kind$inline x)))

    Theorem: eval-state-kind$inline-eval-state-equiv-congruence-on-x

    (defthm eval-state-kind$inline-eval-state-equiv-congruence-on-x
      (implies (eval-state-equiv x x-equiv)
               (equal (eval-state-kind$inline x)
                      (eval-state-kind$inline x-equiv)))
      :rule-classes :congruence)

    Theorem: consp-of-eval-state-fix

    (defthm consp-of-eval-state-fix
      (consp (eval-state-fix x))
      :rule-classes :type-prescription)