Lifting of the circuit to a predicate.
Function:
(defun boolean-assert-pred (x prime) (and (equal (pfield::mul (pfield::sub (mod 1 prime) x prime) x prime) (mod 0 prime))))
Theorem:
(defthm definition-satp-to-boolean-assert-pred (implies (and (equal (pfcs::lookup-definition '(:simple "boolean_assert") pfcs::defs) '(:definition (name :simple "boolean_assert") (pfcs::para (:simple "x")) (pfcs::body (:equal (:mul (:sub (:const 1) (:var (:simple "x"))) (:var (:simple "x"))) (:const 0))))) (pfield::fep x prime) (primep prime)) (equal (pfcs::definition-satp '(:simple "boolean_assert") pfcs::defs (list x) prime) (boolean-assert-pred x prime))))