Basic equivalence relation for visibility structures.
Function:
(defun visibility-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (visibilityp acl2::x) (visibilityp acl2::y)))) (equal (visibility-fix acl2::x) (visibility-fix acl2::y)))
Theorem:
(defthm visibility-equiv-is-an-equivalence (and (booleanp (visibility-equiv x y)) (visibility-equiv x x) (implies (visibility-equiv x y) (visibility-equiv y x)) (implies (and (visibility-equiv x y) (visibility-equiv y z)) (visibility-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm visibility-equiv-implies-equal-visibility-fix-1 (implies (visibility-equiv acl2::x x-equiv) (equal (visibility-fix acl2::x) (visibility-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm visibility-fix-under-visibility-equiv (visibility-equiv (visibility-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-visibility-fix-1-forward-to-visibility-equiv (implies (equal (visibility-fix acl2::x) acl2::y) (visibility-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-visibility-fix-2-forward-to-visibility-equiv (implies (equal acl2::x (visibility-fix acl2::y)) (visibility-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm visibility-equiv-of-visibility-fix-1-forward (implies (visibility-equiv (visibility-fix acl2::x) acl2::y) (visibility-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm visibility-equiv-of-visibility-fix-2-forward (implies (visibility-equiv acl2::x (visibility-fix acl2::y)) (visibility-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)