Lifting of the circuit to a predicate.
Theorem:
(defthm field-neq-pred-suff (implies (and (pfield::fep w prime) (and (equal (pfield::mul (pfield::sub x y prime) w prime) z) (equal (pfield::mul (pfield::sub x y prime) (pfield::sub (mod 1 prime) z prime) prime) (mod 0 prime)))) (field-neq-pred x y z prime)))
Theorem:
(defthm definition-satp-to-field-neq-pred (implies (and (equal (pfcs::lookup-definition '(:simple "field_neq") pfcs::defs) '(:definition (name :simple "field_neq") (pfcs::para (:simple "x") (:simple "y") (:simple "z")) (pfcs::body (:equal (:mul (:sub (:var (:simple "x")) (:var (:simple "y"))) (:var (:simple "w"))) (:var (:simple "z"))) (:equal (:mul (:sub (:var (:simple "x")) (:var (:simple "y"))) (:sub (:const 1) (:var (:simple "z")))) (:const 0))))) (pfield::fep x prime) (pfield::fep y prime) (pfield::fep z prime) (primep prime)) (equal (pfcs::definition-satp '(:simple "field_neq") pfcs::defs (list x y z) prime) (field-neq-pred x y z prime))))