Lifting of the circuit to a predicate.
Function:
(defun boolean-neq-pred (x y z prime) (and (boolean-xor-pred x y z prime)))
Theorem:
(defthm definition-satp-to-boolean-neq-pred (implies (and (equal (pfcs::lookup-definition '(:simple "boolean_neq") pfcs::defs) '(:definition (name :simple "boolean_neq") (pfcs::para (:simple "x") (:simple "y") (:simple "z")) (pfcs::body (:relation (:simple "boolean_xor") ((:var (:simple "x")) (:var (:simple "y")) (:var (:simple "z"))))))) (equal (pfcs::lookup-definition '(:simple "boolean_xor") pfcs::defs) '(:definition (name :simple "boolean_xor") (pfcs::para (:simple "x") (:simple "y") (:simple "z")) (pfcs::body (:equal (:mul (:mul (:const 2) (:var (:simple "x"))) (:var (:simple "y"))) (:sub (:add (:var (:simple "x")) (:var (:simple "y"))) (:var (:simple "z"))))))) (pfield::fep x prime) (pfield::fep y prime) (pfield::fep z prime) (primep prime)) (equal (pfcs::definition-satp '(:simple "boolean_neq") pfcs::defs (list x y z) prime) (boolean-neq-pred x y z prime))))