Lifting of the circuit to a predicate.
Function:
(defun field-square-pred (x y prime) (and (field-mul-pred x x y prime)))
Theorem:
(defthm definition-satp-to-field-square-pred (implies (and (equal (pfcs::lookup-definition '(:simple "field_square") pfcs::defs) '(:definition (name :simple "field_square") (pfcs::para (:simple "x") (:simple "y")) (pfcs::body (:relation (:simple "field_mul") ((:var (:simple "x")) (:var (:simple "x")) (:var (:simple "y"))))))) (equal (pfcs::lookup-definition '(:simple "field_mul") pfcs::defs) '(:definition (name :simple "field_mul") (pfcs::para (:simple "x") (:simple "y") (:simple "z")) (pfcs::body (:equal (:mul (:var (:simple "x")) (:var (:simple "y"))) (:var (:simple "z")))))) (pfield::fep x prime) (pfield::fep y prime) (primep prime)) (equal (pfcs::definition-satp '(:simple "field_square") pfcs::defs (list x y) prime) (field-square-pred x y prime))))