Fixing function for name structures.
Function:
(defun name-fix$inline (x) (declare (xargs :guard (namep x))) (let ((__function__ 'name-fix)) (declare (ignorable __function__)) (mbe :logic (case (name-kind x) (:simple (b* ((string (str-fix (std::da-nth 0 (cdr x))))) (cons :simple (list string)))) (:indexed (b* ((string (str-fix (std::da-nth 0 (cdr x)))) (index (nfix (std::da-nth 1 (cdr x))))) (cons :indexed (list string index))))) :exec x)))
Theorem:
(defthm namep-of-name-fix (b* ((new-x (name-fix$inline x))) (namep new-x)) :rule-classes :rewrite)
Theorem:
(defthm name-fix-when-namep (implies (namep x) (equal (name-fix x) x)))
Function:
(defun name-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (namep acl2::x) (namep acl2::y)))) (equal (name-fix acl2::x) (name-fix acl2::y)))
Theorem:
(defthm name-equiv-is-an-equivalence (and (booleanp (name-equiv x y)) (name-equiv x x) (implies (name-equiv x y) (name-equiv y x)) (implies (and (name-equiv x y) (name-equiv y z)) (name-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm name-equiv-implies-equal-name-fix-1 (implies (name-equiv acl2::x x-equiv) (equal (name-fix acl2::x) (name-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm name-fix-under-name-equiv (name-equiv (name-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-name-fix-1-forward-to-name-equiv (implies (equal (name-fix acl2::x) acl2::y) (name-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-name-fix-2-forward-to-name-equiv (implies (equal acl2::x (name-fix acl2::y)) (name-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm name-equiv-of-name-fix-1-forward (implies (name-equiv (name-fix acl2::x) acl2::y) (name-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm name-equiv-of-name-fix-2-forward (implies (name-equiv acl2::x (name-fix acl2::y)) (name-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm name-kind$inline-of-name-fix-x (equal (name-kind$inline (name-fix x)) (name-kind$inline x)))
Theorem:
(defthm name-kind$inline-name-equiv-congruence-on-x (implies (name-equiv x x-equiv) (equal (name-kind$inline x) (name-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-name-fix (consp (name-fix x)) :rule-classes :type-prescription)