• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • Proof-checker-array
      • Soft
      • C
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
      • Sidekick
      • Leftist-trees
      • Java
        • Atj
        • Aij
        • Language
          • Syntax
            • Grammar
            • Unicode-escapes
            • Unicode-input-char
            • Escape-sequence
            • Identifiers
            • Primitive-types
            • Reference-types
            • Keywords
            • Unicode-characters
            • Integer-literals
            • String-literals
            • Octal-digits
            • Hexadecimal-digits
            • Decimal-digits
            • Binary-digits
            • Character-literals
            • Null-literal
            • Floating-point-literals
            • Boolean-literals
            • Package-names
            • Literals
              • Literal
                • Literal-case
                • Literal-fix
                  • Literal-equiv
                  • Literalp
                  • Literal-string
                  • Literal-integer
                  • Literal-fpoint
                  • Literal-char
                  • Literal-boolean
                  • Literal-kind
                  • Literal-null
            • Semantics
        • Taspi
        • Riscv
        • Bitcoin
        • Des
        • Ethereum
        • X86isa
        • Sha-2
        • Yul
        • Zcash
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Aleo
        • Bigmems
        • Builtins
        • Execloader
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Community
      • Proof-automation
      • ACL2
      • Macro-libraries
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Literal

    Literal-fix

    Fixing function for literal structures.

    Signature
    (literal-fix x) → new-x
    Arguments
    x — Guard (literalp x).
    Returns
    new-x — Type (literalp new-x).

    Definitions and Theorems

    Function: literal-fix$inline

    (defun literal-fix$inline (x)
     (declare (xargs :guard (literalp x)))
     (let ((__function__ 'literal-fix))
      (declare (ignorable __function__))
      (mbe
       :logic
       (case (literal-kind x)
        (:integer
             (b* ((get (integer-literal-fix (std::da-nth 0 (cdr x)))))
               (cons :integer (list get))))
        (:fpoint
          (b*
            ((get (floating-point-literal-fix (std::da-nth 0 (cdr x)))))
            (cons :fpoint (list get))))
        (:char (b* ((get (char-literal-fix (std::da-nth 0 (cdr x)))))
                 (cons :char (list get))))
        (:string
             (b* ((get (string-literal-fix (std::da-nth 0 (cdr x)))))
               (cons :string (list get))))
        (:boolean (b* ((get (acl2::bool-fix (std::da-nth 0 (cdr x)))))
                    (cons :boolean (list get))))
        (:null (cons :null (list))))
       :exec x)))

    Theorem: literalp-of-literal-fix

    (defthm literalp-of-literal-fix
      (b* ((new-x (literal-fix$inline x)))
        (literalp new-x))
      :rule-classes :rewrite)

    Theorem: literal-fix-when-literalp

    (defthm literal-fix-when-literalp
      (implies (literalp x)
               (equal (literal-fix x) x)))

    Function: literal-equiv$inline

    (defun literal-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (literalp acl2::x)
                                  (literalp acl2::y))))
      (equal (literal-fix acl2::x)
             (literal-fix acl2::y)))

    Theorem: literal-equiv-is-an-equivalence

    (defthm literal-equiv-is-an-equivalence
      (and (booleanp (literal-equiv x y))
           (literal-equiv x x)
           (implies (literal-equiv x y)
                    (literal-equiv y x))
           (implies (and (literal-equiv x y)
                         (literal-equiv y z))
                    (literal-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: literal-equiv-implies-equal-literal-fix-1

    (defthm literal-equiv-implies-equal-literal-fix-1
      (implies (literal-equiv acl2::x x-equiv)
               (equal (literal-fix acl2::x)
                      (literal-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: literal-fix-under-literal-equiv

    (defthm literal-fix-under-literal-equiv
      (literal-equiv (literal-fix acl2::x)
                     acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-literal-fix-1-forward-to-literal-equiv

    (defthm equal-of-literal-fix-1-forward-to-literal-equiv
      (implies (equal (literal-fix acl2::x) acl2::y)
               (literal-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-literal-fix-2-forward-to-literal-equiv

    (defthm equal-of-literal-fix-2-forward-to-literal-equiv
      (implies (equal acl2::x (literal-fix acl2::y))
               (literal-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: literal-equiv-of-literal-fix-1-forward

    (defthm literal-equiv-of-literal-fix-1-forward
      (implies (literal-equiv (literal-fix acl2::x)
                              acl2::y)
               (literal-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: literal-equiv-of-literal-fix-2-forward

    (defthm literal-equiv-of-literal-fix-2-forward
      (implies (literal-equiv acl2::x (literal-fix acl2::y))
               (literal-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: literal-kind$inline-of-literal-fix-x

    (defthm literal-kind$inline-of-literal-fix-x
      (equal (literal-kind$inline (literal-fix x))
             (literal-kind$inline x)))

    Theorem: literal-kind$inline-literal-equiv-congruence-on-x

    (defthm literal-kind$inline-literal-equiv-congruence-on-x
      (implies (literal-equiv x x-equiv)
               (equal (literal-kind$inline x)
                      (literal-kind$inline x-equiv)))
      :rule-classes :congruence)

    Theorem: consp-of-literal-fix

    (defthm consp-of-literal-fix
      (consp (literal-fix x))
      :rule-classes :type-prescription)