Semantics of the
This is only valid in 64-bit mode.
We read an unsigned 32-bit integer from
Function:
(defun exec-slliw (rd rs1 imm stat feat) (declare (xargs :guard (and (ubyte5p rd) (ubyte5p rs1) (ubyte5p imm) (statp stat) (featp feat)))) (declare (xargs :guard (and (feat-64p feat) (stat-validp stat feat)))) (let ((__function__ 'exec-slliw)) (declare (ignorable __function__)) (b* ((rs1-operand (read-xreg-unsigned32 (ubyte5-fix rs1) stat feat)) (shift-amount (ubyte5-fix imm)) (result (ash rs1-operand shift-amount)) (stat (write-xreg-32 (ubyte5-fix rd) result stat feat)) (stat (inc4-pc stat feat))) stat)))
Theorem:
(defthm statp-of-exec-slliw (b* ((new-stat (exec-slliw rd rs1 imm stat feat))) (statp new-stat)) :rule-classes :rewrite)
Theorem:
(defthm stat-validp-of-exec-slliw (implies (stat-validp stat feat) (b* ((?new-stat (exec-slliw rd rs1 imm stat feat))) (stat-validp new-stat feat))))
Theorem:
(defthm exec-slliw-of-ubyte5-fix-rd (equal (exec-slliw (ubyte5-fix rd) rs1 imm stat feat) (exec-slliw rd rs1 imm stat feat)))
Theorem:
(defthm exec-slliw-ubyte5-equiv-congruence-on-rd (implies (ubyte5-equiv rd rd-equiv) (equal (exec-slliw rd rs1 imm stat feat) (exec-slliw rd-equiv rs1 imm stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-slliw-of-ubyte5-fix-rs1 (equal (exec-slliw rd (ubyte5-fix rs1) imm stat feat) (exec-slliw rd rs1 imm stat feat)))
Theorem:
(defthm exec-slliw-ubyte5-equiv-congruence-on-rs1 (implies (ubyte5-equiv rs1 rs1-equiv) (equal (exec-slliw rd rs1 imm stat feat) (exec-slliw rd rs1-equiv imm stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-slliw-of-ubyte5-fix-imm (equal (exec-slliw rd rs1 (ubyte5-fix imm) stat feat) (exec-slliw rd rs1 imm stat feat)))
Theorem:
(defthm exec-slliw-ubyte5-equiv-congruence-on-imm (implies (ubyte5-equiv imm imm-equiv) (equal (exec-slliw rd rs1 imm stat feat) (exec-slliw rd rs1 imm-equiv stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-slliw-of-stat-fix-stat (equal (exec-slliw rd rs1 imm (stat-fix stat) feat) (exec-slliw rd rs1 imm stat feat)))
Theorem:
(defthm exec-slliw-stat-equiv-congruence-on-stat (implies (stat-equiv stat stat-equiv) (equal (exec-slliw rd rs1 imm stat feat) (exec-slliw rd rs1 imm stat-equiv feat))) :rule-classes :congruence)
Theorem:
(defthm exec-slliw-of-feat-fix-feat (equal (exec-slliw rd rs1 imm stat (feat-fix feat)) (exec-slliw rd rs1 imm stat feat)))
Theorem:
(defthm exec-slliw-feat-equiv-congruence-on-feat (implies (feat-equiv feat feat-equiv) (equal (exec-slliw rd rs1 imm stat feat) (exec-slliw rd rs1 imm stat feat-equiv))) :rule-classes :congruence)