• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
      • Satlink
      • Truth
      • Ubdds
      • Bdd
      • Faig
        • Faig-constructors
          • T-aig-ite*
          • F-aig-ite*
          • T-aig-ite
            • F-aig-ite
            • T-aig-tristate
            • F-aig-zif
            • T-aig-xor
            • T-aig-or
            • T-aig-iff
            • T-aig-and
            • F-aig-and
            • F-aig-xor
            • F-aig-or
            • F-aig-iff
            • F-aig-res
            • F-aig-unfloat
            • T-aig-not
            • F-aig-pullup
            • F-aig-not
            • T-aig-xdet
            • F-aig-xdet
          • Faig-onoff-equiv
          • Faig-purebool-p
          • Faig-alist-equiv
          • Faig-equiv
          • Faig-eval
          • Faig-restrict
          • Faig-fix
          • Faig-partial-eval
          • Faig-compose
          • Faig-compose-alist
          • Patbind-faig
          • Faig-constants
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Community
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Faig-constructors

    T-aig-ite

    (t-aig-ite c a b) constructs a (less conservative) FAIG representing (if c a b), assuming these input FAIGs cannot evaluate to Z.

    Signature
    (t-aig-ite c a b) → *

    This is a less-conservative version of t-aig-ite* that emits a in the case that c is unknown but a = b. See 4v-ite for discussion related to this issue.

    Definitions and Theorems

    Function: t-aig-ite

    (defun t-aig-ite (c a b)
      (declare (xargs :guard t))
      (let ((__function__ 't-aig-ite))
        (declare (ignorable __function__))
        (b* (((faig a1 a0) a)
             ((faig b1 b0) b)
             ((faig c1 c0) c))
          (cons (aig-or (aig-and c1 a1) (aig-and c0 b1))
                (aig-or (aig-and c1 a0)
                        (aig-and c0 b0))))))

    Theorem: faig-eval-of-t-aig-ite

    (defthm faig-eval-of-t-aig-ite
      (equal (faig-eval (t-aig-ite c a b) env)
             (t-aig-ite (faig-eval c env)
                        (faig-eval a env)
                        (faig-eval b env))))

    Theorem: faig-fix-equiv-implies-equal-t-aig-ite-1

    (defthm faig-fix-equiv-implies-equal-t-aig-ite-1
      (implies (faig-fix-equiv c c-equiv)
               (equal (t-aig-ite c a b)
                      (t-aig-ite c-equiv a b)))
      :rule-classes (:congruence))

    Theorem: faig-fix-equiv-implies-equal-t-aig-ite-2

    (defthm faig-fix-equiv-implies-equal-t-aig-ite-2
      (implies (faig-fix-equiv a a-equiv)
               (equal (t-aig-ite c a b)
                      (t-aig-ite c a-equiv b)))
      :rule-classes (:congruence))

    Theorem: faig-fix-equiv-implies-equal-t-aig-ite-3

    (defthm faig-fix-equiv-implies-equal-t-aig-ite-3
      (implies (faig-fix-equiv b b-equiv)
               (equal (t-aig-ite c a b)
                      (t-aig-ite c a b-equiv)))
      :rule-classes (:congruence))

    Theorem: faig-equiv-implies-faig-equiv-t-aig-ite-3

    (defthm faig-equiv-implies-faig-equiv-t-aig-ite-3
      (implies (faig-equiv b b-equiv)
               (faig-equiv (t-aig-ite c a b)
                           (t-aig-ite c a b-equiv)))
      :rule-classes (:congruence))

    Theorem: faig-equiv-implies-faig-equiv-t-aig-ite-2

    (defthm faig-equiv-implies-faig-equiv-t-aig-ite-2
      (implies (faig-equiv a a-equiv)
               (faig-equiv (t-aig-ite c a b)
                           (t-aig-ite c a-equiv b)))
      :rule-classes (:congruence))

    Theorem: faig-equiv-implies-faig-equiv-t-aig-ite-1

    (defthm faig-equiv-implies-faig-equiv-t-aig-ite-1
      (implies (faig-equiv c c-equiv)
               (faig-equiv (t-aig-ite c a b)
                           (t-aig-ite c-equiv a b)))
      :rule-classes (:congruence))