• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
        • Proof-support
        • Abstract-syntax
        • R1cs-subset
        • Semantics
        • Abstract-syntax-operations
          • Expression-var-list
          • Lookup-definition
            • Constrel
            • Constraint-constrels
            • Constraint-list-constrels
            • Constraint-rels
            • Constraint-list-rels
            • Expression-sub
            • Expression-const/var-listp
            • Expression-var-listp
            • Expression-neg
            • Expression-list-vars
            • Expression-vars
            • Definition-free-vars
            • Constraint-vars
            • Constraint-list-vars
            • Constrel-set
          • Indexed-names
          • Well-formedness
          • Concrete-syntax
          • R1cs-bridge
          • Parser-interface
        • Legacy-defrstobj
        • Proof-checker-array
        • Soft
        • C
        • Farray
        • Rp-rewriter
        • Instant-runoff-voting
        • Imp-language
        • Sidekick
        • Leftist-trees
        • Java
        • Taspi
        • Bitcoin
        • Riscv
        • Des
        • Ethereum
        • X86isa
        • Sha-2
        • Yul
        • Zcash
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Bigmems
        • Builtins
        • Execloader
        • Aleo
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Abstract-syntax-operations

    Lookup-definition

    Look up a definition in a list of definitions.

    Signature
    (lookup-definition name defs) → def?
    Arguments
    name — Guard (stringp name).
    defs — Guard (definition-listp defs).
    Returns
    def? — Type (definition-optionp def?).

    If the list has a definition for the given name, return that definition. Otherwise return nil.

    We return the first definition found for that name. In a well-formed lists of definitions, there is at most a definition for each name, and thus the first one found (if any) is also the only one.

    Definitions and Theorems

    Function: lookup-definition

    (defun lookup-definition (name defs)
      (declare (xargs :guard (and (stringp name)
                                  (definition-listp defs))))
      (let ((__function__ 'lookup-definition))
        (declare (ignorable __function__))
        (b* (((when (endp defs)) nil)
             (def (car defs))
             ((when (equal (definition->name def)
                           (str-fix name)))
              (definition-fix def)))
          (lookup-definition name (cdr defs)))))

    Theorem: definition-optionp-of-lookup-definition

    (defthm definition-optionp-of-lookup-definition
      (b* ((def? (lookup-definition name defs)))
        (definition-optionp def?))
      :rule-classes :rewrite)

    Theorem: lookup-definition-of-str-fix-name

    (defthm lookup-definition-of-str-fix-name
      (equal (lookup-definition (str-fix name) defs)
             (lookup-definition name defs)))

    Theorem: lookup-definition-streqv-congruence-on-name

    (defthm lookup-definition-streqv-congruence-on-name
      (implies (acl2::streqv name name-equiv)
               (equal (lookup-definition name defs)
                      (lookup-definition name-equiv defs)))
      :rule-classes :congruence)

    Theorem: lookup-definition-of-definition-list-fix-defs

    (defthm lookup-definition-of-definition-list-fix-defs
      (equal (lookup-definition name (definition-list-fix defs))
             (lookup-definition name defs)))

    Theorem: lookup-definition-definition-list-equiv-congruence-on-defs

    (defthm lookup-definition-definition-list-equiv-congruence-on-defs
      (implies (definition-list-equiv defs defs-equiv)
               (equal (lookup-definition name defs)
                      (lookup-definition name defs-equiv)))
      :rule-classes :congruence)