• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • Proof-checker-array
      • Soft
      • C
        • Syntax-for-tools
        • Atc
        • Language
          • Abstract-syntax
          • Integer-ranges
          • Implementation-environments
          • Dynamic-semantics
          • Static-semantics
          • Grammar
          • Integer-formats
          • Types
          • Portable-ascii-identifiers
          • Values
          • Integer-operations
          • Computation-states
            • Write-object
            • Objdesign-of-var
            • Compustate-scopes-numbers
              • Create-var
              • Read-object
              • Compustate
              • Frame
              • Enter-scope
              • Compustate-scopes-numbers-aux
              • Compustate-option
              • Push-frame
              • Exit-scope
              • Compustate-frames-number
              • Compustate-option-result
              • Scope-list-result
              • Pop-frame
              • Compustate-result
              • Scope-result
              • Compustate-top-frame-scopes-number
              • Top-frame
              • Heap
              • Scope
              • Scope-list
              • Frame-list
            • Object-designators
            • Operations
            • Errors
            • Tag-environments
            • Function-environments
            • Character-sets
            • Flexible-array-member-removal
            • Arithmetic-operations
            • Pointer-operations
            • Bytes
            • Keywords
            • Real-operations
            • Array-operations
            • Scalar-operations
            • Structure-operations
          • Representation
          • Transformation-tools
          • Insertion-sort
          • Pack
        • Farray
        • Rp-rewriter
        • Instant-runoff-voting
        • Imp-language
        • Sidekick
        • Leftist-trees
        • Java
        • Taspi
        • Bitcoin
        • Riscv
        • Des
        • Ethereum
        • X86isa
        • Sha-2
        • Yul
        • Zcash
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Bigmems
        • Builtins
        • Execloader
        • Aleo
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Computation-states

    Compustate-scopes-numbers

    Ordered list of the numbers of scopes in the call stack frames.

    Signature
    (compustate-scopes-numbers compst) → ns
    Arguments
    compst — Guard (compustatep compst).
    Returns
    ns — Type (pos-listp ns).

    Each frame in the call stack has a number of scopes. This function returns these numbers, in the same order as the frames in the stack.

    Definitions and Theorems

    Function: compustate-scopes-numbers-aux

    (defun compustate-scopes-numbers-aux (frames)
      (declare (xargs :guard (frame-listp frames)))
      (let ((__function__ 'compustate-scopes-numbers-aux))
        (declare (ignorable __function__))
        (cond ((endp frames) nil)
              (t (cons (len (frame->scopes (car frames)))
                       (compustate-scopes-numbers-aux (cdr frames)))))))

    Theorem: pos-listp-of-compustate-scopes-numbers-aux

    (defthm pos-listp-of-compustate-scopes-numbers-aux
      (b* ((ns (compustate-scopes-numbers-aux frames)))
        (pos-listp ns))
      :rule-classes :rewrite)

    Theorem: len-of-compustate-scopes-numbers-aux

    (defthm len-of-compustate-scopes-numbers-aux
      (b* ((?ns (compustate-scopes-numbers-aux frames)))
        (equal (len ns) (len frames))))

    Theorem: consp-of-compustate-scopes-numbers-aux

    (defthm consp-of-compustate-scopes-numbers-aux
      (b* ((?ns (compustate-scopes-numbers-aux frames)))
        (equal (consp ns) (consp frames))))

    Theorem: car-of-compustate-scopes-numbers-aux

    (defthm car-of-compustate-scopes-numbers-aux
      (b* ((?ns (compustate-scopes-numbers-aux frames)))
        (implies (> (len frames) 0)
                 (equal (car ns)
                        (len (frame->scopes (car frames)))))))

    Theorem: compustate-scopes-numbers-aux-of-append

    (defthm compustate-scopes-numbers-aux-of-append
      (equal (compustate-scopes-numbers-aux (append frames1 frames2))
             (append (compustate-scopes-numbers-aux frames1)
                     (compustate-scopes-numbers-aux frames2))))

    Theorem: compustate-scopes-numbers-aux-of-rev

    (defthm compustate-scopes-numbers-aux-of-rev
      (equal (compustate-scopes-numbers-aux (rev frames))
             (rev (compustate-scopes-numbers-aux frames))))

    Theorem: compustate-scopes-numbers-aux-of-update-nth

    (defthm compustate-scopes-numbers-aux-of-update-nth
     (implies
      (< (nfix i) (len frames))
      (equal (compustate-scopes-numbers-aux (update-nth i frame frames))
             (update-nth i (len (frame->scopes frame))
                         (compustate-scopes-numbers-aux frames)))))

    Theorem: update-nth-of-nth-and-compustate-scopes-numbers-aux

    (defthm update-nth-of-nth-and-compustate-scopes-numbers-aux
     (implies
      (< (nfix i)
         (len (compustate->frames compst)))
      (equal
       (update-nth
            i
            (len (frame->scopes (nth i (compustate->frames compst))))
            (compustate-scopes-numbers-aux (compustate->frames compst)))
       (compustate-scopes-numbers-aux (compustate->frames compst)))))

    Theorem: compustate-scopes-numbers-aux-of-frame-list-fix-frames

    (defthm compustate-scopes-numbers-aux-of-frame-list-fix-frames
      (equal (compustate-scopes-numbers-aux (frame-list-fix frames))
             (compustate-scopes-numbers-aux frames)))

    Theorem: compustate-scopes-numbers-aux-frame-list-equiv-congruence-on-frames

    (defthm
     compustate-scopes-numbers-aux-frame-list-equiv-congruence-on-frames
     (implies (frame-list-equiv frames frames-equiv)
              (equal (compustate-scopes-numbers-aux frames)
                     (compustate-scopes-numbers-aux frames-equiv)))
     :rule-classes :congruence)

    Function: compustate-scopes-numbers

    (defun compustate-scopes-numbers (compst)
      (declare (xargs :guard (compustatep compst)))
      (let ((__function__ 'compustate-scopes-numbers))
        (declare (ignorable __function__))
        (compustate-scopes-numbers-aux (compustate->frames compst))))

    Theorem: pos-listp-of-compustate-scopes-numbers

    (defthm pos-listp-of-compustate-scopes-numbers
      (b* ((ns (compustate-scopes-numbers compst)))
        (pos-listp ns))
      :rule-classes :rewrite)

    Theorem: len-of-compustate-scopes-numbers

    (defthm len-of-compustate-scopes-numbers
      (b* ((?ns (compustate-scopes-numbers compst)))
        (equal (len ns)
               (len (compustate->frames compst)))))

    Theorem: consp-of-compustate-scopes-numbers

    (defthm consp-of-compustate-scopes-numbers
      (implies (> (compustate-frames-number compst) 0)
               (b* ((?ns (compustate-scopes-numbers compst)))
                 (consp ns)))
      :rule-classes :type-prescription)

    Theorem: posp-of-car-of-compustate-scopes-numbers

    (defthm posp-of-car-of-compustate-scopes-numbers
      (implies (> (compustate-frames-number compst) 0)
               (b* ((?ns (compustate-scopes-numbers compst)))
                 (posp (car ns))))
      :rule-classes :type-prescription)

    Theorem: car-of-compustate-scopes-numbers-lower-bound

    (defthm car-of-compustate-scopes-numbers-lower-bound
      (implies (> (compustate-frames-number compst) 0)
               (b* ((?ns (compustate-scopes-numbers compst)))
                 (> (car ns) 0)))
      :rule-classes :linear)

    Theorem: car-of-compustate-scopes-numbers

    (defthm car-of-compustate-scopes-numbers
     (b* ((?ns (compustate-scopes-numbers compst)))
      (implies
        (> (compustate-frames-number compst) 0)
        (equal
             (car ns)
             (len (frame->scopes (car (compustate->frames compst))))))))

    Theorem: compustate-scopes-numbers-of-push-frame

    (defthm compustate-scopes-numbers-of-push-frame
      (equal (compustate-scopes-numbers (push-frame frame compst))
             (cons (len (frame->scopes frame))
                   (compustate-scopes-numbers compst))))

    Theorem: compustate-scopes-numbers-of-pop-frame

    (defthm compustate-scopes-numbers-of-pop-frame
      (equal (compustate-scopes-numbers (pop-frame compst))
             (cdr (compustate-scopes-numbers compst))))

    Theorem: compustate-scopes-numbers-of-compustate-fix-compst

    (defthm compustate-scopes-numbers-of-compustate-fix-compst
      (equal (compustate-scopes-numbers (compustate-fix compst))
             (compustate-scopes-numbers compst)))

    Theorem: compustate-scopes-numbers-compustate-equiv-congruence-on-compst

    (defthm
        compustate-scopes-numbers-compustate-equiv-congruence-on-compst
      (implies (compustate-equiv compst compst-equiv)
               (equal (compustate-scopes-numbers compst)
                      (compustate-scopes-numbers compst-equiv)))
      :rule-classes :congruence)