• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
        • Proof-support
        • Abstract-syntax
        • R1cs-subset
        • Semantics
        • Abstract-syntax-operations
        • Indexed-names
        • Well-formedness
          • Definition-list-wfp
          • Definition-wfp
            • Constraint-wfp
            • Constraint-list-wfp
            • System-wfp
          • Concrete-syntax
          • R1cs-bridge
          • Parser-interface
        • Legacy-defrstobj
        • Proof-checker-array
        • Soft
        • C
        • Farray
        • Rp-rewriter
        • Instant-runoff-voting
        • Imp-language
        • Sidekick
        • Leftist-trees
        • Java
        • Taspi
        • Bitcoin
        • Riscv
        • Des
        • Ethereum
        • X86isa
        • Sha-2
        • Yul
        • Zcash
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Bigmems
        • Builtins
        • Execloader
        • Aleo
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Well-formedness

    Definition-wfp

    Check if a definition is well-formed.

    Signature
    (definition-wfp def defs) → yes/no
    Arguments
    def — Guard (definitionp def).
    defs — Guard (definition-listp defs).
    Returns
    yes/no — Type (booleanp yes/no).

    This is checked with respect to definitions that precede the definition being checked in a larger list that includes the definition. That is, this predicate holds when the definition can be used to extend the list. See definition-list-wfp.

    A definition is well-formed iff its constraints are all well-formed, its parameters are distinct, and the relation being defined is not already defined.

    Definitions and Theorems

    Function: definition-wfp

    (defun definition-wfp (def defs)
      (declare (xargs :guard (and (definitionp def)
                                  (definition-listp defs))))
      (let ((__function__ 'definition-wfp))
        (declare (ignorable __function__))
        (b* (((definition def) def))
          (and (not (lookup-definition def.name defs))
               (no-duplicatesp-equal def.para)
               (constraint-list-wfp def.body defs)))))

    Theorem: booleanp-of-definition-wfp

    (defthm booleanp-of-definition-wfp
      (b* ((yes/no (definition-wfp def defs)))
        (booleanp yes/no))
      :rule-classes :rewrite)

    Theorem: definition-wfp-of-definition-fix-def

    (defthm definition-wfp-of-definition-fix-def
      (equal (definition-wfp (definition-fix def)
                             defs)
             (definition-wfp def defs)))

    Theorem: definition-wfp-definition-equiv-congruence-on-def

    (defthm definition-wfp-definition-equiv-congruence-on-def
      (implies (definition-equiv def def-equiv)
               (equal (definition-wfp def defs)
                      (definition-wfp def-equiv defs)))
      :rule-classes :congruence)

    Theorem: definition-wfp-of-definition-list-fix-defs

    (defthm definition-wfp-of-definition-list-fix-defs
      (equal (definition-wfp def (definition-list-fix defs))
             (definition-wfp def defs)))

    Theorem: definition-wfp-definition-list-equiv-congruence-on-defs

    (defthm definition-wfp-definition-list-equiv-congruence-on-defs
      (implies (definition-list-equiv defs defs-equiv)
               (equal (definition-wfp def defs)
                      (definition-wfp def defs-equiv)))
      :rule-classes :congruence)