• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
        • Proof-support
        • Abstract-syntax
        • R1cs-subset
          • Sr1cs-constraintp
          • R1cs-polynomialp
            • R1cs-constraintp
            • R1cs-monomialp
            • Sr1cs-definitionp
            • R1cs-systemp
            • Sr1cs-systemp
            • Sr1cs-definition-listp
            • Sr1cs-constraint-listp
            • R1cs-constraint-listp
          • Semantics
          • Abstract-syntax-operations
          • Indexed-names
          • Well-formedness
          • Concrete-syntax
          • R1cs-bridge
          • Parser-interface
        • Legacy-defrstobj
        • Proof-checker-array
        • Soft
        • C
        • Farray
        • Rp-rewriter
        • Instant-runoff-voting
        • Imp-language
        • Sidekick
        • Leftist-trees
        • Java
        • Taspi
        • Bitcoin
        • Riscv
        • Des
        • Ethereum
        • X86isa
        • Sha-2
        • Yul
        • Zcash
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Bigmems
        • Builtins
        • Execloader
        • Aleo
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • R1cs-subset

    R1cs-polynomialp

    Check if a PFCS expression is an R1CS polynomial.

    Signature
    (r1cs-polynomialp expr) → yes/no
    Arguments
    expr — Guard (expressionp expr).
    Returns
    yes/no — Type (booleanp yes/no).

    This is a linear combination, i.e. a sum of one or more monomials.

    Currently the PFCS abstract syntax only has binary addition. We pick left-associated additions as linear polynomials; the base case is that of a single monomial.

    Definitions and Theorems

    Function: r1cs-polynomialp

    (defun r1cs-polynomialp (expr)
      (declare (xargs :guard (expressionp expr)))
      (let ((__function__ 'r1cs-polynomialp))
        (declare (ignorable __function__))
        (or (r1cs-monomialp expr)
            (and (expression-case expr :add)
                 (r1cs-polynomialp (expression-add->arg1 expr))
                 (r1cs-monomialp (expression-add->arg2 expr))))))

    Theorem: booleanp-of-r1cs-polynomialp

    (defthm booleanp-of-r1cs-polynomialp
      (b* ((yes/no (r1cs-polynomialp expr)))
        (booleanp yes/no))
      :rule-classes :rewrite)

    Theorem: r1cs-polynomialp-of-expression-fix-expr

    (defthm r1cs-polynomialp-of-expression-fix-expr
      (equal (r1cs-polynomialp (expression-fix expr))
             (r1cs-polynomialp expr)))

    Theorem: r1cs-polynomialp-expression-equiv-congruence-on-expr

    (defthm r1cs-polynomialp-expression-equiv-congruence-on-expr
      (implies (expression-equiv expr expr-equiv)
               (equal (r1cs-polynomialp expr)
                      (r1cs-polynomialp expr-equiv)))
      :rule-classes :congruence)