• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • Proof-checker-array
      • Soft
      • C
        • Syntax-for-tools
        • Atc
        • Language
          • Abstract-syntax
          • Integer-ranges
          • Implementation-environments
          • Dynamic-semantics
          • Static-semantics
          • Grammar
          • Integer-formats
          • Types
          • Portable-ascii-identifiers
          • Values
          • Integer-operations
          • Computation-states
          • Object-designators
            • Objdesign
            • Address
            • Object-disjointp
              • Objdesign-option
            • Operations
            • Errors
            • Tag-environments
            • Function-environments
            • Character-sets
            • Flexible-array-member-removal
            • Arithmetic-operations
            • Pointer-operations
            • Bytes
            • Keywords
            • Real-operations
            • Array-operations
            • Scalar-operations
            • Structure-operations
          • Representation
          • Transformation-tools
          • Insertion-sort
          • Pack
        • Farray
        • Rp-rewriter
        • Instant-runoff-voting
        • Imp-language
        • Sidekick
        • Leftist-trees
        • Java
        • Taspi
        • Bitcoin
        • Riscv
        • Des
        • Ethereum
        • X86isa
        • Sha-2
        • Yul
        • Zcash
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Bigmems
        • Builtins
        • Execloader
        • Aleo
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Object-designators

    Object-disjointp

    Check if two designated objects are disjoint.

    Signature
    (object-disjointp objdes1 objdes2) → yes/no
    Arguments
    objdes1 — Guard (objdesignp objdes1).
    objdes2 — Guard (objdesignp objdes2).
    Returns
    yes/no — Type (booleanp yes/no).

    This has to be a sufficient condition for disjointness, but not necessarily a necessary condition; that is, it can be a conservative definition, because it is only used to express when object updates are independent. For now, we require the two object designators to be top-level designators in allocated storage and to be distinct. We may relax this notion in the future, but for now this suffices for our needs.

    Definitions and Theorems

    Function: object-disjointp

    (defun object-disjointp (objdes1 objdes2)
      (declare (xargs :guard (and (objdesignp objdes1)
                                  (objdesignp objdes2))))
      (let ((__function__ 'object-disjointp))
        (declare (ignorable __function__))
        (and (objdesign-case objdes1 :alloc)
             (objdesign-case objdes2 :alloc)
             (not (equal (objdesign-alloc->get objdes1)
                         (objdesign-alloc->get objdes2))))))

    Theorem: booleanp-of-object-disjointp

    (defthm booleanp-of-object-disjointp
      (b* ((yes/no (object-disjointp objdes1 objdes2)))
        (booleanp yes/no))
      :rule-classes :rewrite)

    Theorem: object-disjointp-commutative

    (defthm object-disjointp-commutative
      (equal (object-disjointp x y)
             (object-disjointp y x)))

    Theorem: object-disjointp-of-objdesign-fix-objdes1

    (defthm object-disjointp-of-objdesign-fix-objdes1
      (equal (object-disjointp (objdesign-fix objdes1)
                               objdes2)
             (object-disjointp objdes1 objdes2)))

    Theorem: object-disjointp-objdesign-equiv-congruence-on-objdes1

    (defthm object-disjointp-objdesign-equiv-congruence-on-objdes1
      (implies (objdesign-equiv objdes1 objdes1-equiv)
               (equal (object-disjointp objdes1 objdes2)
                      (object-disjointp objdes1-equiv objdes2)))
      :rule-classes :congruence)

    Theorem: object-disjointp-of-objdesign-fix-objdes2

    (defthm object-disjointp-of-objdesign-fix-objdes2
      (equal (object-disjointp objdes1 (objdesign-fix objdes2))
             (object-disjointp objdes1 objdes2)))

    Theorem: object-disjointp-objdesign-equiv-congruence-on-objdes2

    (defthm object-disjointp-objdesign-equiv-congruence-on-objdes2
      (implies (objdesign-equiv objdes2 objdes2-equiv)
               (equal (object-disjointp objdes1 objdes2)
                      (object-disjointp objdes1 objdes2-equiv)))
      :rule-classes :congruence)