• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • Proof-checker-array
      • Soft
      • C
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
        • Semantics
          • Step
          • Write-var
          • Outcome
            • Outcome-case
            • Outcome-fix
            • Outcome-equiv
            • Outcome-terminated
            • Outcomep
              • Outcome-nonterminating
              • Outcome-kind
            • Beval
            • Read-var
            • Config
            • Terminatingp
            • Aeval
            • Step*
            • Stepn
            • Env
          • Abstract-syntax
          • Interpreter
        • Sidekick
        • Leftist-trees
        • Java
        • Taspi
        • Bitcoin
        • Riscv
        • Des
        • Ethereum
        • X86isa
        • Sha-2
        • Yul
        • Zcash
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Bigmems
        • Builtins
        • Execloader
        • Aleo
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Outcome

    Outcomep

    Recognizer for outcome structures.

    Signature
    (outcomep x) → *

    Definitions and Theorems

    Function: outcomep

    (defun outcomep (x)
      (declare (xargs :guard t))
      (let ((__function__ 'outcomep))
        (declare (ignorable __function__))
        (and (consp x)
             (cond ((or (atom x) (eq (car x) :terminated))
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 1)
                         (b* ((env (std::da-nth 0 (cdr x))))
                           (envp env))))
                   (t (and (eq (car x) :nonterminating)
                           (and (true-listp (cdr x))
                                (eql (len (cdr x)) 0))
                           (b* nil t)))))))

    Theorem: consp-when-outcomep

    (defthm consp-when-outcomep
      (implies (outcomep x) (consp x))
      :rule-classes :compound-recognizer)