• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
        • Deftreeops
        • Defdefparse
        • Defgrammar
        • Tree-utilities
        • Notation
        • Grammar-parser
        • Meta-circular-validation
        • Parsing-primitives-defresult
        • Parsing-primitives-seq
        • Operations
          • In-terminal-set
          • Well-formedness
          • Closure
          • Plugging
          • Ambiguity
            • Concatenation-alternation-disjointp
            • Concatenation-unambiguousp
            • Repetition-unambiguousp
              • Alternation-unambiguousp
              • Alternation-unambiguousp-of-cons-when-disjointp
              • Element-unambiguousp
              • Rules-ambiguousp
              • Prose-val-ambiguous
              • Num-val-unambiguous
              • Char-val-unambiguous
              • Element-prose-val-ambiguous
              • Element-num-val-unambiguous
              • Element-char-val-unambiguous
            • Renaming
            • Numeric-range-retrieval
            • Rule-utilities
            • Removal
            • Character-value-retrieval
          • Examples
          • Differences-with-paper
          • Constructor-utilities
          • Grammar-printer
          • Parsing-tools
        • Vwsim
        • Isar
        • Wp-gen
        • Dimacs-reader
        • Pfcs
        • Legacy-defrstobj
        • Proof-checker-array
        • Soft
        • C
        • Farray
        • Rp-rewriter
        • Instant-runoff-voting
        • Imp-language
        • Sidekick
        • Leftist-trees
        • Java
        • Taspi
        • Bitcoin
        • Riscv
        • Des
        • Ethereum
        • X86isa
        • Sha-2
        • Yul
        • Zcash
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Bigmems
        • Builtins
        • Execloader
        • Aleo
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Ambiguity

    Repetition-unambiguousp

    Notion of unambiguous repetitions.

    A repetition is unambiguous iff any two lists of trees that match the repetition and have the same string at the leaves are the same list of trees.

    A repetition of 0 elements is always unambiguous.

    Definitions and Theorems

    Theorem: repetition-unambiguousp-necc

    (defthm repetition-unambiguousp-necc
     (implies
       (repetition-unambiguousp repetition rules)
       (implies
            (and (tree-listp trees1)
                 (tree-listp trees2)
                 (tree-list-match-repetition-p trees1 repetition rules)
                 (tree-list-match-repetition-p trees2 repetition rules))
            (equal (equal (tree-list->string trees1)
                          (tree-list->string trees2))
                   (equal trees1 trees2)))))

    Theorem: booleanp-of-repetition-unambiguousp

    (defthm booleanp-of-repetition-unambiguousp
      (b* ((yes/no (repetition-unambiguousp repetition rules)))
        (booleanp yes/no))
      :rule-classes :rewrite)

    Theorem: repetition-unambiguousp-rewrite

    (defthm repetition-unambiguousp-rewrite
      (implies
           (and (repetition-unambiguousp repetition rules)
                (tree-list-match-repetition-p trees1 repetition rules)
                (tree-list-match-repetition-p trees2 repetition rules))
           (equal (equal (tree-list->string trees1)
                         (tree-list->string trees2))
                  (tree-list-equiv trees1 trees2))))

    Theorem: empty-repetition-umabiguous

    (defthm empty-repetition-umabiguous
      (implies (equal (repetition->range repetition)
                      (repeat-range 0 (nati-finite 0)))
               (repetition-unambiguousp repetition rules)))