• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
        • Deftreeops
        • Defdefparse
        • Defgrammar
        • Tree-utilities
        • Notation
        • Grammar-parser
        • Meta-circular-validation
        • Parsing-primitives-defresult
        • Parsing-primitives-seq
        • Operations
          • In-terminal-set
          • Well-formedness
          • Closure
          • Plugging
            • Plug-rules
            • Remove-prose-rules
            • Rule-prosep
            • Ambiguity
            • Renaming
            • Numeric-range-retrieval
            • Rule-utilities
            • Removal
            • Character-value-retrieval
          • Examples
          • Differences-with-paper
          • Constructor-utilities
          • Grammar-printer
          • Parsing-tools
        • Vwsim
        • Isar
        • Wp-gen
        • Dimacs-reader
        • Pfcs
        • Legacy-defrstobj
        • Proof-checker-array
        • Soft
        • C
        • Farray
        • Rp-rewriter
        • Instant-runoff-voting
        • Imp-language
        • Sidekick
        • Leftist-trees
        • Java
        • Taspi
        • Bitcoin
        • Riscv
        • Des
        • Ethereum
        • X86isa
        • Sha-2
        • Yul
        • Zcash
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Bigmems
        • Builtins
        • Execloader
        • Aleo
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Plugging

    Rule-prosep

    Check if a rule has a single prose value notation as definiens.

    Signature
    (rule-prosep rule) → yes/no
    Arguments
    rule — Guard (rulep rule).
    Returns
    yes/no — Type (booleanp yes/no).

    Definitions and Theorems

    Function: rule-prosep

    (defun rule-prosep (rule)
     (declare (xargs :guard (rulep rule)))
     (b* ((alternation (rule->definiens rule)))
       (and (consp alternation)
            (not (consp (cdr alternation)))
            (b* ((concatenation (car alternation)))
              (and (consp concatenation)
                   (not (consp (cdr concatenation)))
                   (b* ((repetition (car concatenation))
                        (range (repetition->range repetition))
                        (element (repetition->element repetition)))
                     (and (equal range (repeat-range 1 (nati-finite 1)))
                          (element-case element :prose-val))))))))

    Theorem: booleanp-of-rule-prosep

    (defthm booleanp-of-rule-prosep
      (b* ((yes/no (rule-prosep rule)))
        (booleanp yes/no))
      :rule-classes :rewrite)