• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • Proof-checker-array
      • Soft
      • C
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
      • Sidekick
      • Leftist-trees
      • Java
      • Taspi
      • Bitcoin
      • Riscv
      • Des
      • Ethereum
      • X86isa
      • Sha-2
      • Yul
        • Transformations
        • Language
          • Abstract-syntax
          • Dynamic-semantics
          • Concrete-syntax
          • Static-soundness
          • Static-semantics
          • Errors
            • Reserr-limitp
            • Error-info-wfp
            • Reserr-nonlimitp
          • Yul-json
        • Zcash
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Bigmems
        • Builtins
        • Execloader
        • Aleo
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Errors

    Reserr-nonlimitp

    Recognize non-limit errors.

    Signature
    (reserr-nonlimitp x) → yes/no
    Returns
    yes/no — Type (booleanp yes/no).

    This recognizes all the errors that are not recognized by reserr-limitp. See that recognizer's documentation.

    Definitions and Theorems

    Function: reserr-nonlimitp

    (defun reserr-nonlimitp (x)
      (declare (xargs :guard t))
      (let ((__function__ 'reserr-nonlimitp))
        (declare (ignorable __function__))
        (and (reserrp x)
             (not (reserr-limitp x)))))

    Theorem: booleanp-of-reserr-nonlimitp

    (defthm booleanp-of-reserr-nonlimitp
      (b* ((yes/no (reserr-nonlimitp x)))
        (booleanp yes/no))
      :rule-classes :rewrite)