• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
        • Symbolic-test-vectors
        • Esim-primitives
        • E-conversion
        • Esim-steps
        • Patterns
          • Pat->al
          • Pat-flatten1
            • Similar-patternsp
            • Member-of-pat-flatten
            • Pat-flatten
            • Al->pat
            • Assoc-pat->al
            • Subsetp-of-pat-flatten
            • Pat->fal
            • Data-for-patternp
          • Mod-internal-paths
          • Defmodules
          • Esim-simplify-update-fns
          • Esim-tutorial
          • Esim-vl
        • Vl2014
        • Sv
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Patterns

    Pat-flatten1

    Flatten a pattern into a list of atoms (without an accumulator).

    (pat-flatten1 pat) is just a simpler flattening function that does the same thing as pat-flatten but without an accumulator. It is generally convenient to reason about.

    Definitions and Theorems

    Function: pat-flatten1

    (defun pat-flatten1 (pat)
      (declare (xargs :guard t))
      (mbe :logic
           (if pat (if (atom pat)
                       (list pat)
                     (append (pat-flatten1 (car pat))
                             (pat-flatten1 (cdr pat))))
             nil)
           :exec (pat-flatten pat nil)))

    Theorem: pat-flatten-is-pat-flatten1

    (defthm pat-flatten-is-pat-flatten1
      (equal (pat-flatten pat acc)
             (append (pat-flatten1 pat) acc)))

    Theorem: true-listp-of-pat-flatten1

    (defthm true-listp-of-pat-flatten1
      (true-listp (pat-flatten1 x))
      :rule-classes ((:type-prescription) (:rewrite)))

    Theorem: pat-flatten1-when-atom

    (defthm pat-flatten1-when-atom
      (implies (atom pat)
               (equal (pat-flatten1 pat)
                      (if pat (list pat) nil))))

    Theorem: pat-flatten1-of-cons

    (defthm pat-flatten1-of-cons
      (equal (pat-flatten1 (cons x y))
             (append (pat-flatten1 x)
                     (pat-flatten1 y))))

    Theorem: pat-flatten1-nonnil

    (defthm pat-flatten1-nonnil
      (not (member-equal nil (pat-flatten1 x))))