• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
      • Fgl
      • Vwsim
      • Vl
        • Syntax
        • Loader
        • Warnings
        • Getting-started
        • Utilities
        • Printer
        • Kit
        • Mlib
        • Transforms
          • Unparameterization
          • Elaborate
          • Addnames
          • Annotate
            • Increment-elim
            • Make-implicit-wires
            • Basic-bind-elim
              • Vl-modulelist-apply-binddelta
              • Vl-interfacelist-apply-binddelta
              • Vl-bindelim-main
              • Vl-bindelim-bindlist
              • Vl-bindelim-find-global-target
              • Vl-interfacelist-bindelim
              • Vl-modulelist-bindelim
              • Vl-interface-bindelim
              • Vl-module-bindelim
              • Vl-bindelim-institem
              • Vl-warn-bindintentlist-undefined
              • Vl-warn-bindintent-undefined
              • Vl-interfacelist-bindelim-insttable
              • Vl-modulelist-bindelim-insttable
              • Vl-warn-binddelta-undefined
              • Vl-interface-bindelim-insttable
              • Vl-interface-apply-binddelta
              • Vl-design-bindelim-pass2
              • Vl-bindelim-modinstlist-add-atts
              • Vl-module-bindelim-insttable
              • Vl-module-apply-binddelta
              • Vl-bindelim-modinst-add-atts
              • Vl-design-bindelim-pass1
              • Vl-bindcontext
              • Vl-bindintent->modinsts
              • Vl-bindelim-insttable
              • Vl-bindintentlist->modinsts
              • Vl-binddelta
                • Vl-binddelta-p
                • Vl-binddelta-fix
                  • Vl-bindintent
                  • Vl-binddelta-equiv
                  • Vl-bindintentlist
                • Vl-design-bindelim
                • Vl-bindelim-institemlist
              • Argresolve
              • Basicsanity
              • Portdecl-sign
              • Enum-names
              • Port-resolve
              • Udp-elim
              • Vl-annotate-design
              • Vl-annotate-module
            • Clean-warnings
            • Eliminitial
            • Custom-transform-hooks
            • Problem-modules
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Vl-binddelta

    Vl-binddelta-fix

    (vl-binddelta-fix x) is an fty alist fixing function that follows the fix-keys strategy.

    Signature
    (vl-binddelta-fix x) → fty::newx
    Arguments
    x — Guard (vl-binddelta-p x).
    Returns
    fty::newx — Type (vl-binddelta-p fty::newx).

    Note that in the execution this is just an inline identity function.

    Definitions and Theorems

    Function: vl-binddelta-fix$inline

    (defun vl-binddelta-fix$inline (x)
      (declare (xargs :guard (vl-binddelta-p x)))
      (let ((__function__ 'vl-binddelta-fix))
        (declare (ignorable __function__))
        (mbe :logic
             (if (atom x)
                 x
               (if (consp (car x))
                   (cons (cons (str-fix (caar x))
                               (vl-bindintentlist-fix (cdar x)))
                         (vl-binddelta-fix (cdr x)))
                 (vl-binddelta-fix (cdr x))))
             :exec x)))

    Theorem: vl-binddelta-p-of-vl-binddelta-fix

    (defthm vl-binddelta-p-of-vl-binddelta-fix
      (b* ((fty::newx (vl-binddelta-fix$inline x)))
        (vl-binddelta-p fty::newx))
      :rule-classes :rewrite)

    Theorem: vl-binddelta-fix-when-vl-binddelta-p

    (defthm vl-binddelta-fix-when-vl-binddelta-p
      (implies (vl-binddelta-p x)
               (equal (vl-binddelta-fix x) x)))

    Function: vl-binddelta-equiv$inline

    (defun vl-binddelta-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (vl-binddelta-p acl2::x)
                                  (vl-binddelta-p acl2::y))))
      (equal (vl-binddelta-fix acl2::x)
             (vl-binddelta-fix acl2::y)))

    Theorem: vl-binddelta-equiv-is-an-equivalence

    (defthm vl-binddelta-equiv-is-an-equivalence
      (and (booleanp (vl-binddelta-equiv x y))
           (vl-binddelta-equiv x x)
           (implies (vl-binddelta-equiv x y)
                    (vl-binddelta-equiv y x))
           (implies (and (vl-binddelta-equiv x y)
                         (vl-binddelta-equiv y z))
                    (vl-binddelta-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: vl-binddelta-equiv-implies-equal-vl-binddelta-fix-1

    (defthm vl-binddelta-equiv-implies-equal-vl-binddelta-fix-1
      (implies (vl-binddelta-equiv acl2::x x-equiv)
               (equal (vl-binddelta-fix acl2::x)
                      (vl-binddelta-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: vl-binddelta-fix-under-vl-binddelta-equiv

    (defthm vl-binddelta-fix-under-vl-binddelta-equiv
      (vl-binddelta-equiv (vl-binddelta-fix acl2::x)
                          acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-vl-binddelta-fix-1-forward-to-vl-binddelta-equiv

    (defthm equal-of-vl-binddelta-fix-1-forward-to-vl-binddelta-equiv
      (implies (equal (vl-binddelta-fix acl2::x)
                      acl2::y)
               (vl-binddelta-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-vl-binddelta-fix-2-forward-to-vl-binddelta-equiv

    (defthm equal-of-vl-binddelta-fix-2-forward-to-vl-binddelta-equiv
      (implies (equal acl2::x (vl-binddelta-fix acl2::y))
               (vl-binddelta-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: vl-binddelta-equiv-of-vl-binddelta-fix-1-forward

    (defthm vl-binddelta-equiv-of-vl-binddelta-fix-1-forward
      (implies (vl-binddelta-equiv (vl-binddelta-fix acl2::x)
                                   acl2::y)
               (vl-binddelta-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: vl-binddelta-equiv-of-vl-binddelta-fix-2-forward

    (defthm vl-binddelta-equiv-of-vl-binddelta-fix-2-forward
      (implies (vl-binddelta-equiv acl2::x (vl-binddelta-fix acl2::y))
               (vl-binddelta-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: cons-of-str-fix-k-under-vl-binddelta-equiv

    (defthm cons-of-str-fix-k-under-vl-binddelta-equiv
      (vl-binddelta-equiv (cons (cons (str-fix acl2::k) acl2::v)
                                acl2::x)
                          (cons (cons acl2::k acl2::v) acl2::x)))

    Theorem: cons-streqv-congruence-on-k-under-vl-binddelta-equiv

    (defthm cons-streqv-congruence-on-k-under-vl-binddelta-equiv
      (implies
           (streqv acl2::k k-equiv)
           (vl-binddelta-equiv (cons (cons acl2::k acl2::v) acl2::x)
                               (cons (cons k-equiv acl2::v) acl2::x)))
      :rule-classes :congruence)

    Theorem: cons-of-vl-bindintentlist-fix-v-under-vl-binddelta-equiv

    (defthm cons-of-vl-bindintentlist-fix-v-under-vl-binddelta-equiv
      (vl-binddelta-equiv
           (cons (cons acl2::k (vl-bindintentlist-fix acl2::v))
                 acl2::x)
           (cons (cons acl2::k acl2::v) acl2::x)))

    Theorem: cons-vl-bindintentlist-equiv-congruence-on-v-under-vl-binddelta-equiv

    (defthm
     cons-vl-bindintentlist-equiv-congruence-on-v-under-vl-binddelta-equiv
     (implies
          (vl-bindintentlist-equiv acl2::v v-equiv)
          (vl-binddelta-equiv (cons (cons acl2::k acl2::v) acl2::x)
                              (cons (cons acl2::k v-equiv) acl2::x)))
     :rule-classes :congruence)

    Theorem: cons-of-vl-binddelta-fix-y-under-vl-binddelta-equiv

    (defthm cons-of-vl-binddelta-fix-y-under-vl-binddelta-equiv
      (vl-binddelta-equiv (cons acl2::x (vl-binddelta-fix acl2::y))
                          (cons acl2::x acl2::y)))

    Theorem: cons-vl-binddelta-equiv-congruence-on-y-under-vl-binddelta-equiv

    (defthm
       cons-vl-binddelta-equiv-congruence-on-y-under-vl-binddelta-equiv
      (implies (vl-binddelta-equiv acl2::y y-equiv)
               (vl-binddelta-equiv (cons acl2::x acl2::y)
                                   (cons acl2::x y-equiv)))
      :rule-classes :congruence)

    Theorem: vl-binddelta-fix-of-acons

    (defthm vl-binddelta-fix-of-acons
      (equal (vl-binddelta-fix (cons (cons acl2::a acl2::b) x))
             (cons (cons (str-fix acl2::a)
                         (vl-bindintentlist-fix acl2::b))
                   (vl-binddelta-fix x))))

    Theorem: vl-binddelta-fix-of-append

    (defthm vl-binddelta-fix-of-append
      (equal (vl-binddelta-fix (append std::a std::b))
             (append (vl-binddelta-fix std::a)
                     (vl-binddelta-fix std::b))))

    Theorem: consp-car-of-vl-binddelta-fix

    (defthm consp-car-of-vl-binddelta-fix
      (equal (consp (car (vl-binddelta-fix x)))
             (consp (vl-binddelta-fix x))))