• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
        • Svex-decomposition-methodology
        • Sv-versus-esim
        • Svex-decomp
        • Svex-compose-dfs
        • Svex-compilation
        • Moddb
        • Svmods
        • Svstmt
        • Sv-tutorial
        • Expressions
        • Symbolic-test-vector
        • Vl-to-svex
          • Vl-to-sv
          • Vl-design->sv-design
            • Vl-simpconfig
            • Vl-hierarchy-sv-translation
            • Vl-expr-svex-translation
              • Sv::vl-expr.lisp
              • Vttree
                • Vttree-p
                • Vttree-fix
                  • Vttree-count
                  • Vttree-equiv
                  • Vttree-context
                  • Vttree-branch
                  • Vttree-warnings
                  • Vttree-constraints
                  • Vttree-none
                  • Vttree-kind
                  • Patbind-wvmv
                  • Patbind-vwmv
                  • Patbind-vmv
              • Vl-design->svex-modalist
              • Vl-svstmt
            • Vl-to-sv-main
            • Vl-simplify-sv
            • Vl-user-paramsettings->unparam-names
            • Vl-user-paramsettings->modnames
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Vttree

    Vttree-fix

    Fixing function for vttree structures.

    Signature
    (vttree-fix x) → new-x
    Arguments
    x — Guard (vttree-p x).
    Returns
    new-x — Type (vttree-p new-x).

    Definitions and Theorems

    Function: vttree-fix$inline

    (defun vttree-fix$inline (x)
      (declare (xargs :guard (vttree-p x)))
      (let ((__function__ 'vttree-fix))
        (declare (ignorable __function__))
        (mbe :logic
             (common-lisp::case (vttree-kind x)
               (:none nil)
               (:warnings (b* ((warnings (vl-warninglist-fix (cdr x))))
                            (cons :warnings warnings)))
               (:constraints
                    (b* ((constraints (sv::constraintlist-fix (cdr x))))
                      (cons :constraints constraints)))
               (:context (b* ((ctx (cadr x))
                              (subtree (vttree-fix (cddr x))))
                           (cons :context (cons ctx subtree))))
               (:branch (b* ((left (vttree-fix (car x)))
                             (right (vttree-fix (cdr x))))
                          (cons left right))))
             :exec x)))

    Theorem: vttree-p-of-vttree-fix

    (defthm vttree-p-of-vttree-fix
      (b* ((new-x (vttree-fix$inline x)))
        (vttree-p new-x))
      :rule-classes :rewrite)

    Theorem: vttree-fix-when-vttree-p

    (defthm vttree-fix-when-vttree-p
      (implies (vttree-p x)
               (equal (vttree-fix x) x)))

    Function: vttree-equiv$inline

    (defun vttree-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (vttree-p acl2::x)
                                  (vttree-p acl2::y))))
      (equal (vttree-fix acl2::x)
             (vttree-fix acl2::y)))

    Theorem: vttree-equiv-is-an-equivalence

    (defthm vttree-equiv-is-an-equivalence
      (and (booleanp (vttree-equiv x y))
           (vttree-equiv x x)
           (implies (vttree-equiv x y)
                    (vttree-equiv y x))
           (implies (and (vttree-equiv x y)
                         (vttree-equiv y z))
                    (vttree-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: vttree-equiv-implies-equal-vttree-fix-1

    (defthm vttree-equiv-implies-equal-vttree-fix-1
      (implies (vttree-equiv acl2::x x-equiv)
               (equal (vttree-fix acl2::x)
                      (vttree-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: vttree-fix-under-vttree-equiv

    (defthm vttree-fix-under-vttree-equiv
      (vttree-equiv (vttree-fix acl2::x)
                    acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-vttree-fix-1-forward-to-vttree-equiv

    (defthm equal-of-vttree-fix-1-forward-to-vttree-equiv
      (implies (equal (vttree-fix acl2::x) acl2::y)
               (vttree-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-vttree-fix-2-forward-to-vttree-equiv

    (defthm equal-of-vttree-fix-2-forward-to-vttree-equiv
      (implies (equal acl2::x (vttree-fix acl2::y))
               (vttree-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: vttree-equiv-of-vttree-fix-1-forward

    (defthm vttree-equiv-of-vttree-fix-1-forward
      (implies (vttree-equiv (vttree-fix acl2::x)
                             acl2::y)
               (vttree-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: vttree-equiv-of-vttree-fix-2-forward

    (defthm vttree-equiv-of-vttree-fix-2-forward
      (implies (vttree-equiv acl2::x (vttree-fix acl2::y))
               (vttree-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: vttree-kind$inline-of-vttree-fix-x

    (defthm vttree-kind$inline-of-vttree-fix-x
      (equal (vttree-kind$inline (vttree-fix x))
             (vttree-kind$inline x)))

    Theorem: vttree-kind$inline-vttree-equiv-congruence-on-x

    (defthm vttree-kind$inline-vttree-equiv-congruence-on-x
      (implies (vttree-equiv x x-equiv)
               (equal (vttree-kind$inline x)
                      (vttree-kind$inline x-equiv)))
      :rule-classes :congruence)