• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
        • Svex-decomposition-methodology
        • Sv-versus-esim
        • Svex-decomp
        • Svex-compose-dfs
        • Svex-compilation
        • Moddb
        • Svmods
          • Address
          • Wire
          • Module
          • Lhs
            • Lhs.lisp
            • Lhs-p
            • Lhs-fix
            • Lhrange
            • Lhs-eval-zx
              • Lhs-equiv
              • Lhs-eval
              • Lhs->svex
            • Path
            • Svar-add-namespace
            • Design
            • Modinst
            • Lhs-add-namespace
            • Modalist
            • Path-add-namespace
            • Modname->submodnames
            • Name
            • Constraintlist-addr-p
            • Svex-alist-addr-p
            • Svar-map-addr-p
            • Lhspairs-addr-p
            • Modname
            • Assigns-addr-p
            • Lhs-addr-p
            • Lhatom-addr-p
            • Modhier-list-measure
            • Attributes
            • Modhier-measure
            • Modhier-list-measure-aux
            • Modhier-loopfreelist-p
            • Modhier-loopfree-p
          • Svstmt
          • Sv-tutorial
          • Expressions
          • Symbolic-test-vector
          • Vl-to-svex
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Lhs

    Lhs-eval-zx

    Signature
    (lhs-eval-zx x env) → val
    Arguments
    x — Guard (lhs-p x).
    env — Guard (svex-env-p env).
    Returns
    val — Type (4vec-p val).

    Definitions and Theorems

    Function: lhs-eval-zx

    (defun lhs-eval-zx (x env)
      (declare (xargs :guard (and (lhs-p x) (svex-env-p env))))
      (let ((__function__ 'lhs-eval-zx))
        (declare (ignorable __function__))
        (if (atom x)
            0
          (4vec-concat (2vec (lhrange->w (car x)))
                       (lhatom-eval-zero (lhrange->atom (car x))
                                         env)
                       (lhs-eval-zx (cdr x) env)))))

    Theorem: 4vec-p-of-lhs-eval-zx

    (defthm 4vec-p-of-lhs-eval-zx
      (b* ((val (lhs-eval-zx x env)))
        (4vec-p val))
      :rule-classes :rewrite)

    Theorem: lhs-eval-zx-of-lhs-fix-x

    (defthm lhs-eval-zx-of-lhs-fix-x
      (equal (lhs-eval-zx (lhs-fix x) env)
             (lhs-eval-zx x env)))

    Theorem: lhs-eval-zx-lhs-equiv-congruence-on-x

    (defthm lhs-eval-zx-lhs-equiv-congruence-on-x
      (implies (lhs-equiv x x-equiv)
               (equal (lhs-eval-zx x env)
                      (lhs-eval-zx x-equiv env)))
      :rule-classes :congruence)

    Theorem: lhs-eval-zx-of-svex-env-fix-env

    (defthm lhs-eval-zx-of-svex-env-fix-env
      (equal (lhs-eval-zx x (svex-env-fix env))
             (lhs-eval-zx x env)))

    Theorem: lhs-eval-zx-svex-env-equiv-congruence-on-env

    (defthm lhs-eval-zx-svex-env-equiv-congruence-on-env
      (implies (svex-env-equiv env env-equiv)
               (equal (lhs-eval-zx x env)
                      (lhs-eval-zx x env-equiv)))
      :rule-classes :congruence)

    Theorem: lhs-eval-zx-of-cons

    (defthm lhs-eval-zx-of-cons
      (equal (lhs-eval-zx (cons a x) env)
             (4vec-concat (2vec (lhrange->w a))
                          (lhatom-eval-zero (lhrange->atom a) env)
                          (lhs-eval-zx x env))))

    Theorem: lhs-eval-zx-of-nil

    (defthm lhs-eval-zx-of-nil
      (equal (lhs-eval-zx nil env) 0))