• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
        • Svex-decomposition-methodology
        • Sv-versus-esim
        • Svex-decomp
        • Svex-compose-dfs
        • Svex-compilation
        • Moddb
        • Svmods
          • Address
          • Wire
          • Module
          • Lhs
            • Lhs.lisp
            • Lhs-p
              • Lhs-p-basics
              • Lhs-fix
              • Lhrange
              • Lhs-eval-zx
              • Lhs-equiv
              • Lhs-eval
              • Lhs->svex
            • Path
            • Svar-add-namespace
            • Design
            • Modinst
            • Lhs-add-namespace
            • Modalist
            • Path-add-namespace
            • Modname->submodnames
            • Name
            • Constraintlist-addr-p
            • Svex-alist-addr-p
            • Svar-map-addr-p
            • Lhspairs-addr-p
            • Modname
            • Assigns-addr-p
            • Lhs-addr-p
            • Lhatom-addr-p
            • Modhier-list-measure
            • Attributes
            • Modhier-measure
            • Modhier-list-measure-aux
            • Modhier-loopfreelist-p
            • Modhier-loopfree-p
          • Svstmt
          • Sv-tutorial
          • Expressions
          • Symbolic-test-vector
          • Vl-to-svex
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Lhs-p

    Lhs-p-basics

    Basic theorems about lhs-p, generated by std::deflist.

    Definitions and Theorems

    Theorem: lhs-p-of-cons

    (defthm lhs-p-of-cons
      (equal (lhs-p (cons acl2::a x))
             (and (lhrange-p acl2::a) (lhs-p x)))
      :rule-classes ((:rewrite)))

    Theorem: lhs-p-of-cdr-when-lhs-p

    (defthm lhs-p-of-cdr-when-lhs-p
      (implies (lhs-p (double-rewrite x))
               (lhs-p (cdr x)))
      :rule-classes ((:rewrite)))

    Theorem: lhs-p-when-not-consp

    (defthm lhs-p-when-not-consp
      (implies (not (consp x))
               (equal (lhs-p x) (not x)))
      :rule-classes ((:rewrite)))

    Theorem: lhrange-p-of-car-when-lhs-p

    (defthm lhrange-p-of-car-when-lhs-p
      (implies (lhs-p x)
               (iff (lhrange-p (car x))
                    (or (consp x) (lhrange-p nil))))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-lhs-p-compound-recognizer

    (defthm true-listp-when-lhs-p-compound-recognizer
      (implies (lhs-p x) (true-listp x))
      :rule-classes :compound-recognizer)

    Theorem: lhs-p-of-list-fix

    (defthm lhs-p-of-list-fix
      (implies (lhs-p x) (lhs-p (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: lhs-p-of-rev

    (defthm lhs-p-of-rev
      (equal (lhs-p (rev x))
             (lhs-p (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: lhs-p-of-repeat

    (defthm lhs-p-of-repeat
      (iff (lhs-p (repeat acl2::n x))
           (or (lhrange-p x) (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: lhs-p-of-append

    (defthm lhs-p-of-append
      (equal (lhs-p (append acl2::a acl2::b))
             (and (lhs-p (list-fix acl2::a))
                  (lhs-p acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: lhs-p-of-rcons

    (defthm lhs-p-of-rcons
      (iff (lhs-p (acl2::rcons acl2::a x))
           (and (lhrange-p acl2::a)
                (lhs-p (list-fix x))))
      :rule-classes ((:rewrite)))

    Theorem: lhrange-p-when-member-equal-of-lhs-p

    (defthm lhrange-p-when-member-equal-of-lhs-p
      (and (implies (and (member-equal acl2::a x) (lhs-p x))
                    (lhrange-p acl2::a))
           (implies (and (lhs-p x) (member-equal acl2::a x))
                    (lhrange-p acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: lhs-p-when-subsetp-equal

    (defthm lhs-p-when-subsetp-equal
      (and (implies (and (subsetp-equal x y) (lhs-p y))
                    (equal (lhs-p x) (true-listp x)))
           (implies (and (lhs-p y) (subsetp-equal x y))
                    (equal (lhs-p x) (true-listp x))))
      :rule-classes ((:rewrite)))

    Theorem: lhs-p-of-set-difference-equal

    (defthm lhs-p-of-set-difference-equal
      (implies (lhs-p x)
               (lhs-p (set-difference-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: lhs-p-of-intersection-equal-1

    (defthm lhs-p-of-intersection-equal-1
      (implies (lhs-p (double-rewrite x))
               (lhs-p (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: lhs-p-of-intersection-equal-2

    (defthm lhs-p-of-intersection-equal-2
      (implies (lhs-p (double-rewrite y))
               (lhs-p (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: lhs-p-of-union-equal

    (defthm lhs-p-of-union-equal
      (equal (lhs-p (union-equal x y))
             (and (lhs-p (list-fix x))
                  (lhs-p (double-rewrite y))))
      :rule-classes ((:rewrite)))

    Theorem: lhs-p-of-update-nth

    (defthm lhs-p-of-update-nth
      (implies (lhs-p (double-rewrite x))
               (iff (lhs-p (update-nth acl2::n y x))
                    (and (lhrange-p y)
                         (or (<= (nfix acl2::n) (len x))
                             (lhrange-p nil)))))
      :rule-classes ((:rewrite)))

    Theorem: lhs-p-of-butlast

    (defthm lhs-p-of-butlast
      (implies (lhs-p (double-rewrite x))
               (lhs-p (butlast x acl2::n)))
      :rule-classes ((:rewrite)))