• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
        • Svex-decomposition-methodology
        • Sv-versus-esim
        • Svex-decomp
        • Svex-compose-dfs
        • Svex-compilation
        • Moddb
        • Svmods
          • Address
          • Wire
          • Module
          • Lhs
          • Path
          • Svar-add-namespace
          • Design
          • Modinst
          • Lhs-add-namespace
          • Modalist
          • Path-add-namespace
          • Modname->submodnames
          • Name
          • Constraintlist-addr-p
          • Svex-alist-addr-p
          • Svar-map-addr-p
          • Lhspairs-addr-p
          • Modname
          • Assigns-addr-p
          • Lhs-addr-p
          • Lhatom-addr-p
            • Modhier-list-measure
            • Attributes
            • Modhier-measure
            • Modhier-list-measure-aux
            • Modhier-loopfreelist-p
            • Modhier-loopfree-p
          • Svstmt
          • Sv-tutorial
          • Expressions
          • Symbolic-test-vector
          • Vl-to-svex
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Svmods

    Lhatom-addr-p

    Signature
    (lhatom-addr-p x) → *
    Arguments
    x — Guard (lhatom-p x).

    Definitions and Theorems

    Function: lhatom-addr-p

    (defun lhatom-addr-p (x)
      (declare (xargs :guard (lhatom-p x)))
      (let ((__function__ 'lhatom-addr-p))
        (declare (ignorable __function__))
        (mbe :logic (svarlist-addr-p (lhatom-vars x))
             :exec (lhatom-case x
                                :z t
                                :var (svar-addr-p x.name)))))

    Theorem: lhatom-addr-p-of-lhatom-fix-x

    (defthm lhatom-addr-p-of-lhatom-fix-x
      (equal (lhatom-addr-p (lhatom-fix x))
             (lhatom-addr-p x)))

    Theorem: lhatom-addr-p-lhatom-equiv-congruence-on-x

    (defthm lhatom-addr-p-lhatom-equiv-congruence-on-x
      (implies (lhatom-equiv x x-equiv)
               (equal (lhatom-addr-p x)
                      (lhatom-addr-p x-equiv)))
      :rule-classes :congruence)