• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
      • Fgl
        • Fgl-rewrite-rules
        • Fgl-function-mode
        • Fgl-object
        • Fgl-solving
        • Fgl-handling-if-then-elses
        • Fgl-getting-bits-from-objects
        • Fgl-primitive-and-meta-rules
        • Fgl-counterexamples
        • Fgl-interpreter-overview
        • Fgl-correctness-of-binding-free-variables
        • Fgl-debugging
        • Fgl-testbenches
        • Def-fgl-boolean-constraint
        • Fgl-stack
          • Scratchobj
            • Scratchobj-fix
              • Scratchobj-case
              • Scratchobj-equiv
              • Scratchobj-p
              • Scratchobj-formals
              • Scratchobj-fnsym
              • Scratchobj-fgl-objlist
              • Scratchobj-fgl-obj
              • Scratchobj-cinstlist
              • Scratchobj-cinst
              • Scratchobj-bfrlist
              • Scratchobj-kind
              • Scratchobj-bfr
            • Minor-frame
            • Major-frame
            • Major-stack
            • Scratchlist
            • Minor-stack
          • Fgl-rewrite-tracing
          • Def-fgl-param-thm
          • Def-fgl-thm
          • Fgl-fast-alist-support
          • Fgl-array-support
          • Advanced-equivalence-checking-with-fgl
          • Fgl-fty-support
          • Fgl-internals
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Scratchobj

    Scratchobj-fix

    Fixing function for scratchobj structures.

    Signature
    (scratchobj-fix x) → new-x
    Arguments
    x — Guard (scratchobj-p x).
    Returns
    new-x — Type (scratchobj-p new-x).

    Definitions and Theorems

    Function: scratchobj-fix$inline

    (defun scratchobj-fix$inline (x)
     (declare (xargs :guard (scratchobj-p x)))
     (let ((__function__ 'scratchobj-fix))
      (declare (ignorable __function__))
      (mbe
         :logic
         (case (scratchobj-kind x)
           (:fgl-obj (b* ((val (fgl-object-fix (cdr x))))
                       (cons :fgl-obj val)))
           (:fgl-objlist (b* ((val (fgl-objectlist-fix (cdr x))))
                           (cons :fgl-objlist val)))
           (:bfr (b* ((val (cdr x))) (cons :bfr val)))
           (:bfrlist (b* ((val (list-fix (cdr x))))
                       (cons :bfrlist val)))
           (:cinst (b* ((val (constraint-instance-fix (cdr x))))
                     (cons :cinst val)))
           (:cinstlist (b* ((val (constraint-instancelist-fix (cdr x))))
                         (cons :cinstlist val)))
           (:fnsym (b* ((val (pseudo-fnsym-fix (cdr x))))
                     (cons :fnsym val)))
           (:formals (b* ((val (pseudo-var-list-fix (cdr x))))
                       (cons :formals val))))
         :exec x)))

    Theorem: scratchobj-p-of-scratchobj-fix

    (defthm scratchobj-p-of-scratchobj-fix
      (b* ((new-x (scratchobj-fix$inline x)))
        (scratchobj-p new-x))
      :rule-classes :rewrite)

    Theorem: scratchobj-fix-when-scratchobj-p

    (defthm scratchobj-fix-when-scratchobj-p
      (implies (scratchobj-p x)
               (equal (scratchobj-fix x) x)))

    Function: scratchobj-equiv$inline

    (defun scratchobj-equiv$inline (x y)
      (declare (xargs :guard (and (scratchobj-p x)
                                  (scratchobj-p y))))
      (equal (scratchobj-fix x)
             (scratchobj-fix y)))

    Theorem: scratchobj-equiv-is-an-equivalence

    (defthm scratchobj-equiv-is-an-equivalence
      (and (booleanp (scratchobj-equiv x y))
           (scratchobj-equiv x x)
           (implies (scratchobj-equiv x y)
                    (scratchobj-equiv y x))
           (implies (and (scratchobj-equiv x y)
                         (scratchobj-equiv y z))
                    (scratchobj-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: scratchobj-equiv-implies-equal-scratchobj-fix-1

    (defthm scratchobj-equiv-implies-equal-scratchobj-fix-1
      (implies (scratchobj-equiv x x-equiv)
               (equal (scratchobj-fix x)
                      (scratchobj-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: scratchobj-fix-under-scratchobj-equiv

    (defthm scratchobj-fix-under-scratchobj-equiv
      (scratchobj-equiv (scratchobj-fix x) x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-scratchobj-fix-1-forward-to-scratchobj-equiv

    (defthm equal-of-scratchobj-fix-1-forward-to-scratchobj-equiv
      (implies (equal (scratchobj-fix x) y)
               (scratchobj-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-scratchobj-fix-2-forward-to-scratchobj-equiv

    (defthm equal-of-scratchobj-fix-2-forward-to-scratchobj-equiv
      (implies (equal x (scratchobj-fix y))
               (scratchobj-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: scratchobj-equiv-of-scratchobj-fix-1-forward

    (defthm scratchobj-equiv-of-scratchobj-fix-1-forward
      (implies (scratchobj-equiv (scratchobj-fix x) y)
               (scratchobj-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: scratchobj-equiv-of-scratchobj-fix-2-forward

    (defthm scratchobj-equiv-of-scratchobj-fix-2-forward
      (implies (scratchobj-equiv x (scratchobj-fix y))
               (scratchobj-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: scratchobj-kind$inline-of-scratchobj-fix-x

    (defthm scratchobj-kind$inline-of-scratchobj-fix-x
      (equal (scratchobj-kind$inline (scratchobj-fix x))
             (scratchobj-kind$inline x)))

    Theorem: scratchobj-kind$inline-scratchobj-equiv-congruence-on-x

    (defthm scratchobj-kind$inline-scratchobj-equiv-congruence-on-x
      (implies (scratchobj-equiv x x-equiv)
               (equal (scratchobj-kind$inline x)
                      (scratchobj-kind$inline x-equiv)))
      :rule-classes :congruence)

    Theorem: consp-of-scratchobj-fix

    (defthm consp-of-scratchobj-fix
      (consp (scratchobj-fix x))
      :rule-classes :type-prescription)