• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
        • Term-level-reasoning
        • Glmc
        • Other-resources
        • Optimization
        • Reference
          • Def-gl-thm
          • Shape-specs
          • Symbolic-objects
          • Gl-aside
          • Def-gl-param-thm
          • Symbolic-arithmetic
          • Bfr
            • Pbfr-depends-on
              • Bfr-varname-p
              • Bfr-varname-fix
              • Bfr-to-param-space
              • Bfr-depends-on
              • Aig-var-fix
              • Bfr-reasoning
              • Bfr-andc2
              • Bfr-andc1
              • Bfr-unparam-env
              • Bfr-set-var
              • Bfr-nor
              • Bfr-nand
              • Bfr-mode
              • Bfr-equiv
              • Bfr-xor
              • Bfr-iff
              • Bfr-eval
              • Bfr-param-env
              • Bfr-lookup
              • Bfr-env-equiv
              • Bfr-and
              • Bfr-var
              • Bfr-or
              • Bfr-not
              • Bfr-ite
              • Bdd-mode-or-p-true
              • Aig-mode-or-p-true
              • Bfr-case
            • Def-gl-boolean-constraint
            • Gl-mbe
            • Bvec
            • Flex-bindings
            • Auto-bindings
            • Gl-interp
            • Gl-set-uninterpreted
            • Def-gl-clause-processor
            • Def-glcp-ctrex-rewrite
            • ACL2::always-equal
            • Gl-hint
            • Def-gl-rewrite
            • Def-gl-branch-merge
            • Gl-force-check
            • Gl-concretize
            • Gl-assert
            • Gl-param-thm
            • Gl-simplify-satlink-mode
            • Gl-satlink-mode
            • Gl-bdd-mode
            • Gl-aig-bddify-mode
            • Gl-fraig-satlink-mode
          • Debugging
          • Basic-tutorial
        • Esim
        • Vl2014
        • Sv
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Bfr

    Pbfr-depends-on

    Signature
    (pbfr-depends-on k p x) → *

    Definitions and Theorems

    Function: pbfr-depends-on

    (defun pbfr-depends-on (k p x)
      (declare (xargs :guard t))
      (let ((__function__ 'pbfr-depends-on))
        (declare (ignorable __function__))
        (bfr-case :bdd (pbfr-semantic-depends-on k p x)
                  :aig (bfr-depends-on k (bfr-from-param-space p x)))))

    Theorem: pbfr-eval-of-set-non-dep

    (defthm pbfr-eval-of-set-non-dep
      (implies (and (not (pbfr-depends-on k p x))
                    (bfr-eval p env)
                    (bfr-eval p (bfr-set-var k v env)))
               (equal (bfr-eval x
                                (bfr-param-env p (bfr-set-var k v env)))
                      (bfr-eval x (bfr-param-env p env)))))

    Theorem: non-var-implies-non-var-in-restrict-with-iterated-assigns-alist

    (defthm
        non-var-implies-non-var-in-restrict-with-iterated-assigns-alist
     (implies
      (not (set::in v (acl2::aig-vars x)))
      (not
       (set::in
        v
        (acl2::aig-vars
             (acl2::aig-restrict
                  x
                  (acl2::aig-extract-iterated-assigns-alist y clk)))))))

    Theorem: pbfr-depends-on-of-bfr-var

    (defthm pbfr-depends-on-of-bfr-var
     (implies
         (and (not (bfr-depends-on m p))
              (bfr-eval p env))
         (equal (pbfr-depends-on m p (bfr-to-param-space p (bfr-var n)))
                (equal (bfr-varname-fix m)
                       (bfr-varname-fix n)))))

    Theorem: pbfr-depends-on-of-constants

    (defthm pbfr-depends-on-of-constants
      (and (not (pbfr-depends-on k p t))
           (not (pbfr-depends-on k p nil))))

    Theorem: no-new-deps-of-pbfr-not

    (defthm no-new-deps-of-pbfr-not
      (implies (not (pbfr-depends-on k p x))
               (not (pbfr-depends-on k p (bfr-not x)))))

    Theorem: no-new-deps-of-pbfr-and

    (defthm no-new-deps-of-pbfr-and
      (implies (and (not (pbfr-depends-on k p x))
                    (not (pbfr-depends-on k p y)))
               (not (pbfr-depends-on k p (bfr-binary-and x y)))))

    Theorem: no-new-deps-of-pbfr-or

    (defthm no-new-deps-of-pbfr-or
      (implies (and (not (pbfr-depends-on k p x))
                    (not (pbfr-depends-on k p y)))
               (not (pbfr-depends-on k p (bfr-binary-or x y)))))

    Theorem: no-new-deps-of-pbfr-xor

    (defthm no-new-deps-of-pbfr-xor
      (implies (and (not (pbfr-depends-on k p x))
                    (not (pbfr-depends-on k p y)))
               (not (pbfr-depends-on k p (bfr-xor x y)))))

    Theorem: no-new-deps-of-pbfr-iff

    (defthm no-new-deps-of-pbfr-iff
      (implies (and (not (pbfr-depends-on k p x))
                    (not (pbfr-depends-on k p y)))
               (not (pbfr-depends-on k p (bfr-iff x y)))))

    Theorem: no-new-deps-of-pbfr-nor

    (defthm no-new-deps-of-pbfr-nor
      (implies (and (not (pbfr-depends-on k p x))
                    (not (pbfr-depends-on k p y)))
               (not (pbfr-depends-on k p (bfr-nor x y)))))

    Theorem: no-new-deps-of-pbfr-nand

    (defthm no-new-deps-of-pbfr-nand
      (implies (and (not (pbfr-depends-on k p x))
                    (not (pbfr-depends-on k p y)))
               (not (pbfr-depends-on k p (bfr-nand x y)))))

    Theorem: no-new-deps-of-pbfr-andc1

    (defthm no-new-deps-of-pbfr-andc1
      (implies (and (not (pbfr-depends-on k p x))
                    (not (pbfr-depends-on k p y)))
               (not (pbfr-depends-on k p (bfr-andc1 x y)))))

    Theorem: no-new-deps-of-pbfr-andc2

    (defthm no-new-deps-of-pbfr-andc2
      (implies (and (not (pbfr-depends-on k p x))
                    (not (pbfr-depends-on k p y)))
               (not (pbfr-depends-on k p (bfr-andc2 x y)))))

    Theorem: no-new-deps-of-pbfr-ite

    (defthm no-new-deps-of-pbfr-ite
      (implies (and (not (pbfr-depends-on k p x))
                    (not (pbfr-depends-on k p y))
                    (not (pbfr-depends-on k p z)))
               (not (pbfr-depends-on k p (bfr-ite-fn x y z)))))

    Theorem: pbfr-depends-on-when-booleanp

    (defthm pbfr-depends-on-when-booleanp
      (implies (booleanp y)
               (not (pbfr-depends-on k p y)))
      :rule-classes ((:rewrite :backchain-limit-lst 0)))