• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
        • Svex-decomposition-methodology
        • Sv-versus-esim
        • Svex-decomp
        • Svex-compose-dfs
        • Svex-compilation
        • Moddb
        • Svmods
          • Address
          • Wire
            • Wire-fix
              • Wire-p
              • Make-wire
              • Wire-equiv
              • Change-wire
              • Wire->name
              • Wire->low-idx
              • Wire->delay
              • Wire->width
              • Wire->type
              • Wire->atts
              • Wirelist
              • Wire->revp
              • Wiretype
            • Module
            • Lhs
            • Path
            • Svar-add-namespace
            • Design
            • Modinst
            • Lhs-add-namespace
            • Modalist
            • Path-add-namespace
            • Modname->submodnames
            • Name
            • Constraintlist-addr-p
            • Svex-alist-addr-p
            • Svar-map-addr-p
            • Lhspairs-addr-p
            • Modname
            • Assigns-addr-p
            • Lhs-addr-p
            • Lhatom-addr-p
            • Modhier-list-measure
            • Attributes
            • Modhier-measure
            • Modhier-list-measure-aux
            • Modhier-loopfreelist-p
            • Modhier-loopfree-p
          • Svstmt
          • Sv-tutorial
          • Expressions
          • Symbolic-test-vector
          • Vl-to-svex
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Wire

    Wire-fix

    Fixing function for wire structures.

    Signature
    (wire-fix x) → new-x
    Arguments
    x — Guard (wire-p x).
    Returns
    new-x — Type (wire-p new-x).

    Definitions and Theorems

    Function: wire-fix$inline

    (defun wire-fix$inline (x)
     (declare (xargs :guard (wire-p x)))
     (let ((__function__ 'wire-fix))
      (declare (ignorable __function__))
      (mbe
       :logic
       (b*
        ((name (name-fix (std::prod-car (std::prod-car x))))
         (width
            (pos-fix (std::prod-car (std::prod-cdr (std::prod-car x)))))
         (low-idx
              (ifix (std::prod-cdr (std::prod-cdr (std::prod-car x)))))
         (delay (acl2::maybe-posp-fix
                     (std::prod-car (std::prod-car (std::prod-cdr x)))))
         (revp (std::prod-cdr (std::prod-car (std::prod-cdr x))))
         (type (wiretype-fix
                    (std::prod-car (std::prod-cdr (std::prod-cdr x)))))
         (atts (attributes-fix
                    (std::prod-cdr (std::prod-cdr (std::prod-cdr x))))))
        (std::prod-cons
             (std::prod-cons name (std::prod-cons width low-idx))
             (std::prod-cons (std::prod-cons delay revp)
                             (std::prod-cons type atts))))
       :exec x)))

    Theorem: wire-p-of-wire-fix

    (defthm wire-p-of-wire-fix
      (b* ((new-x (wire-fix$inline x)))
        (wire-p new-x))
      :rule-classes :rewrite)

    Theorem: wire-fix-when-wire-p

    (defthm wire-fix-when-wire-p
      (implies (wire-p x)
               (equal (wire-fix x) x)))

    Function: wire-equiv$inline

    (defun wire-equiv$inline (x y)
      (declare (xargs :guard (and (wire-p x) (wire-p y))))
      (equal (wire-fix x) (wire-fix y)))

    Theorem: wire-equiv-is-an-equivalence

    (defthm wire-equiv-is-an-equivalence
      (and (booleanp (wire-equiv x y))
           (wire-equiv x x)
           (implies (wire-equiv x y)
                    (wire-equiv y x))
           (implies (and (wire-equiv x y) (wire-equiv y z))
                    (wire-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: wire-equiv-implies-equal-wire-fix-1

    (defthm wire-equiv-implies-equal-wire-fix-1
      (implies (wire-equiv x x-equiv)
               (equal (wire-fix x) (wire-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: wire-fix-under-wire-equiv

    (defthm wire-fix-under-wire-equiv
      (wire-equiv (wire-fix x) x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-wire-fix-1-forward-to-wire-equiv

    (defthm equal-of-wire-fix-1-forward-to-wire-equiv
      (implies (equal (wire-fix x) y)
               (wire-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-wire-fix-2-forward-to-wire-equiv

    (defthm equal-of-wire-fix-2-forward-to-wire-equiv
      (implies (equal x (wire-fix y))
               (wire-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: wire-equiv-of-wire-fix-1-forward

    (defthm wire-equiv-of-wire-fix-1-forward
      (implies (wire-equiv (wire-fix x) y)
               (wire-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: wire-equiv-of-wire-fix-2-forward

    (defthm wire-equiv-of-wire-fix-2-forward
      (implies (wire-equiv x (wire-fix y))
               (wire-equiv x y))
      :rule-classes :forward-chaining)