• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
        • Svex-decomposition-methodology
        • Sv-versus-esim
        • Svex-decomp
        • Svex-compose-dfs
        • Svex-compilation
        • Moddb
        • Svmods
          • Address
          • Wire
          • Module
            • Module-fix
              • Make-module
              • Module-vars
              • Module-p
              • Module-equiv
              • Change-module
              • Module->constraints
              • Module->aliaspairs
              • Module->wires
              • Module->insts
              • Module->fixups
              • Module->assigns
              • Module-addr-p
            • Lhs
            • Path
            • Svar-add-namespace
            • Design
            • Modinst
            • Lhs-add-namespace
            • Modalist
            • Path-add-namespace
            • Modname->submodnames
            • Name
            • Constraintlist-addr-p
            • Svex-alist-addr-p
            • Svar-map-addr-p
            • Lhspairs-addr-p
            • Modname
            • Assigns-addr-p
            • Lhs-addr-p
            • Lhatom-addr-p
            • Modhier-list-measure
            • Attributes
            • Modhier-measure
            • Modhier-list-measure-aux
            • Modhier-loopfreelist-p
            • Modhier-loopfree-p
          • Svstmt
          • Sv-tutorial
          • Expressions
          • Symbolic-test-vector
          • Vl-to-svex
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Module

    Module-fix

    Fixing function for module structures.

    Signature
    (module-fix x) → new-x
    Arguments
    x — Guard (module-p x).
    Returns
    new-x — Type (module-p new-x).

    Definitions and Theorems

    Function: module-fix$inline

    (defun module-fix$inline (x)
     (declare (xargs :guard (module-p x)))
     (let ((__function__ 'module-fix))
      (declare (ignorable __function__))
      (mbe
         :logic
         (b* ((wires (wirelist-fix (cdr (std::da-nth 0 x))))
              (insts (modinstlist-fix (cdr (std::da-nth 1 x))))
              (assigns (assigns-fix (cdr (std::da-nth 2 x))))
              (fixups (assigns-fix (cdr (std::da-nth 3 x))))
              (constraints (constraintlist-fix (cdr (std::da-nth 4 x))))
              (aliaspairs (lhspairs-fix (cdr (std::da-nth 5 x)))))
           (list (cons 'wires wires)
                 (cons 'insts insts)
                 (cons 'assigns assigns)
                 (cons 'fixups fixups)
                 (cons 'constraints constraints)
                 (cons 'aliaspairs aliaspairs)))
         :exec x)))

    Theorem: module-p-of-module-fix

    (defthm module-p-of-module-fix
      (b* ((new-x (module-fix$inline x)))
        (module-p new-x))
      :rule-classes :rewrite)

    Theorem: module-fix-when-module-p

    (defthm module-fix-when-module-p
      (implies (module-p x)
               (equal (module-fix x) x)))

    Function: module-equiv$inline

    (defun module-equiv$inline (x y)
      (declare (xargs :guard (and (module-p x) (module-p y))))
      (equal (module-fix x) (module-fix y)))

    Theorem: module-equiv-is-an-equivalence

    (defthm module-equiv-is-an-equivalence
      (and (booleanp (module-equiv x y))
           (module-equiv x x)
           (implies (module-equiv x y)
                    (module-equiv y x))
           (implies (and (module-equiv x y)
                         (module-equiv y z))
                    (module-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: module-equiv-implies-equal-module-fix-1

    (defthm module-equiv-implies-equal-module-fix-1
      (implies (module-equiv x x-equiv)
               (equal (module-fix x)
                      (module-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: module-fix-under-module-equiv

    (defthm module-fix-under-module-equiv
      (module-equiv (module-fix x) x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-module-fix-1-forward-to-module-equiv

    (defthm equal-of-module-fix-1-forward-to-module-equiv
      (implies (equal (module-fix x) y)
               (module-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-module-fix-2-forward-to-module-equiv

    (defthm equal-of-module-fix-2-forward-to-module-equiv
      (implies (equal x (module-fix y))
               (module-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: module-equiv-of-module-fix-1-forward

    (defthm module-equiv-of-module-fix-1-forward
      (implies (module-equiv (module-fix x) y)
               (module-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: module-equiv-of-module-fix-2-forward

    (defthm module-equiv-of-module-fix-2-forward
      (implies (module-equiv x (module-fix y))
               (module-equiv x y))
      :rule-classes :forward-chaining)