• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
        • Svex-decomposition-methodology
        • Sv-versus-esim
        • Svex-decomp
        • Svex-compose-dfs
        • Svex-compilation
        • Moddb
        • Svmods
          • Address
          • Wire
          • Module
            • Module-fix
            • Make-module
            • Module-vars
            • Module-p
              • Module-equiv
              • Change-module
              • Module->constraints
              • Module->aliaspairs
              • Module->wires
              • Module->insts
              • Module->fixups
              • Module->assigns
              • Module-addr-p
            • Lhs
            • Path
            • Svar-add-namespace
            • Design
            • Modinst
            • Lhs-add-namespace
            • Modalist
            • Path-add-namespace
            • Modname->submodnames
            • Name
            • Constraintlist-addr-p
            • Svex-alist-addr-p
            • Svar-map-addr-p
            • Lhspairs-addr-p
            • Modname
            • Assigns-addr-p
            • Lhs-addr-p
            • Lhatom-addr-p
            • Modhier-list-measure
            • Attributes
            • Modhier-measure
            • Modhier-list-measure-aux
            • Modhier-loopfreelist-p
            • Modhier-loopfree-p
          • Svstmt
          • Sv-tutorial
          • Expressions
          • Symbolic-test-vector
          • Vl-to-svex
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Module

    Module-p

    Recognizer for module structures.

    Signature
    (module-p x) → *

    Definitions and Theorems

    Function: module-p

    (defun module-p (x)
     (declare (xargs :guard t))
     (let ((__function__ 'module-p))
      (declare (ignorable __function__))
      (and
       (mbe :logic
            (and (alistp x)
                 (equal (strip-cars x)
                        '(wires insts
                                assigns fixups constraints aliaspairs)))
            :exec (fty::alist-with-carsp
                       x
                       '(wires insts
                               assigns fixups constraints aliaspairs)))
       (b* ((wires (cdr (std::da-nth 0 x)))
            (insts (cdr (std::da-nth 1 x)))
            (assigns (cdr (std::da-nth 2 x)))
            (fixups (cdr (std::da-nth 3 x)))
            (constraints (cdr (std::da-nth 4 x)))
            (aliaspairs (cdr (std::da-nth 5 x))))
         (and (wirelist-p wires)
              (modinstlist-p insts)
              (assigns-p assigns)
              (assigns-p fixups)
              (constraintlist-p constraints)
              (lhspairs-p aliaspairs))))))

    Theorem: consp-when-module-p

    (defthm consp-when-module-p
      (implies (module-p x) (consp x))
      :rule-classes :compound-recognizer)