• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
      • Fgl
        • Fgl-rewrite-rules
        • Fgl-function-mode
        • Fgl-object
        • Fgl-solving
        • Fgl-handling-if-then-elses
        • Fgl-getting-bits-from-objects
        • Fgl-primitive-and-meta-rules
        • Fgl-counterexamples
        • Fgl-interpreter-overview
        • Fgl-correctness-of-binding-free-variables
        • Fgl-debugging
        • Fgl-testbenches
        • Def-fgl-boolean-constraint
        • Fgl-stack
        • Fgl-rewrite-tracing
        • Def-fgl-param-thm
        • Def-fgl-thm
        • Fgl-fast-alist-support
        • Fgl-array-support
        • Advanced-equivalence-checking-with-fgl
        • Fgl-fty-support
        • Fgl-internals
          • Symbolic-arithmetic
          • Bfr
            • Bfr-eval
            • Bfrstate
            • Bfr->aignet-lit
            • Bfr-p
            • Bounded-lit-fix
            • Bfr-list-fix
            • Aignet-lit->bfr
            • Variable-g-bindings
            • Bfr-listp$
            • Bfrstate>=
              • Bfr-listp-witness
              • Fgl-object-bindings-bfrlist
              • Bfr-set-var
              • Bfr-negate
              • Bfr-fix
              • Fgl-bfr-object-bindings-p
              • Bfr-mode
              • Bfr-mode-is
              • Lbfr-case
              • Bfrstate-case
              • Bfrstate-mode-is
              • Lbfr-mode-is
              • Bfr-mode-p
            • Fgl-interpreter-state
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Bfr

    Bfrstate>=

    Signature
    (bfrstate>= x y) → *
    Arguments
    x — Guard (bfrstate-p x).
    y — Guard (bfrstate-p y).

    Definitions and Theorems

    Function: bfrstate>=

    (defun bfrstate>= (x y)
      (declare (xargs :guard (and (bfrstate-p x) (bfrstate-p y))))
      (let ((__function__ 'bfrstate>=))
        (declare (ignorable __function__))
        (and (eql (bfrstate->mode x)
                  (bfrstate->mode y))
             (>= (bfrstate->bound x)
                 (bfrstate->bound y)))))

    Theorem: bfrstate>=-self

    (defthm bfrstate>=-self
      (bfrstate>= x x))

    Theorem: bfrstate>=-implies-mode

    (defthm bfrstate>=-implies-mode
      (implies (bfrstate>= x y)
               (equal (bfrstate->mode x)
                      (bfrstate->mode y))))

    Theorem: bfrstate>=-implies-bound

    (defthm bfrstate>=-implies-bound
      (implies (bfrstate>= x y)
               (>= (bfrstate->bound x)
                   (bfrstate->bound y)))
      :rule-classes (:rewrite :linear))

    Theorem: bfrstate>=-of-bfrstate-fix-x

    (defthm bfrstate>=-of-bfrstate-fix-x
      (equal (bfrstate>= (bfrstate-fix x) y)
             (bfrstate>= x y)))

    Theorem: bfrstate>=-bfrstate-equiv-congruence-on-x

    (defthm bfrstate>=-bfrstate-equiv-congruence-on-x
      (implies (bfrstate-equiv x x-equiv)
               (equal (bfrstate>= x y)
                      (bfrstate>= x-equiv y)))
      :rule-classes :congruence)

    Theorem: bfrstate>=-of-bfrstate-fix-y

    (defthm bfrstate>=-of-bfrstate-fix-y
      (equal (bfrstate>= x (bfrstate-fix y))
             (bfrstate>= x y)))

    Theorem: bfrstate>=-bfrstate-equiv-congruence-on-y

    (defthm bfrstate>=-bfrstate-equiv-congruence-on-y
      (implies (bfrstate-equiv y y-equiv)
               (equal (bfrstate>= x y)
                      (bfrstate>= x y-equiv)))
      :rule-classes :congruence)