• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
      • Fgl
        • Fgl-rewrite-rules
        • Fgl-function-mode
        • Fgl-object
        • Fgl-solving
        • Fgl-handling-if-then-elses
        • Fgl-getting-bits-from-objects
        • Fgl-primitive-and-meta-rules
        • Fgl-counterexamples
        • Fgl-interpreter-overview
        • Fgl-correctness-of-binding-free-variables
        • Fgl-debugging
        • Fgl-testbenches
        • Def-fgl-boolean-constraint
        • Fgl-stack
          • Scratchobj
          • Minor-frame
          • Major-frame
          • Major-stack
          • Scratchlist
          • Minor-stack
            • Minor-stack-fix
            • Minor-stack-equiv
              • Minor-stack-p
          • Fgl-rewrite-tracing
          • Def-fgl-param-thm
          • Def-fgl-thm
          • Fgl-fast-alist-support
          • Fgl-array-support
          • Advanced-equivalence-checking-with-fgl
          • Fgl-fty-support
          • Fgl-internals
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Minor-stack

    Minor-stack-equiv

    Basic equivalence relation for minor-stack structures.

    Definitions and Theorems

    Function: minor-stack-equiv$inline

    (defun minor-stack-equiv$inline (x y)
      (declare (xargs :guard (and (minor-stack-p x)
                                  (minor-stack-p y))))
      (equal (minor-stack-fix x)
             (minor-stack-fix y)))

    Theorem: minor-stack-equiv-is-an-equivalence

    (defthm minor-stack-equiv-is-an-equivalence
      (and (booleanp (minor-stack-equiv x y))
           (minor-stack-equiv x x)
           (implies (minor-stack-equiv x y)
                    (minor-stack-equiv y x))
           (implies (and (minor-stack-equiv x y)
                         (minor-stack-equiv y z))
                    (minor-stack-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: minor-stack-equiv-implies-equal-minor-stack-fix-1

    (defthm minor-stack-equiv-implies-equal-minor-stack-fix-1
      (implies (minor-stack-equiv x x-equiv)
               (equal (minor-stack-fix x)
                      (minor-stack-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: minor-stack-fix-under-minor-stack-equiv

    (defthm minor-stack-fix-under-minor-stack-equiv
      (minor-stack-equiv (minor-stack-fix x)
                         x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-minor-stack-fix-1-forward-to-minor-stack-equiv

    (defthm equal-of-minor-stack-fix-1-forward-to-minor-stack-equiv
      (implies (equal (minor-stack-fix x) y)
               (minor-stack-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-minor-stack-fix-2-forward-to-minor-stack-equiv

    (defthm equal-of-minor-stack-fix-2-forward-to-minor-stack-equiv
      (implies (equal x (minor-stack-fix y))
               (minor-stack-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: minor-stack-equiv-of-minor-stack-fix-1-forward

    (defthm minor-stack-equiv-of-minor-stack-fix-1-forward
      (implies (minor-stack-equiv (minor-stack-fix x)
                                  y)
               (minor-stack-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: minor-stack-equiv-of-minor-stack-fix-2-forward

    (defthm minor-stack-equiv-of-minor-stack-fix-2-forward
      (implies (minor-stack-equiv x (minor-stack-fix y))
               (minor-stack-equiv x y))
      :rule-classes :forward-chaining)