• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
        • Svex-decomposition-methodology
        • Sv-versus-esim
        • Svex-decomp
        • Svex-compose-dfs
        • Svex-compilation
        • Moddb
        • Svmods
        • Svstmt
        • Sv-tutorial
        • Expressions
          • Rewriting
          • Svex
            • Svar
            • Least-fixpoint
            • Svex-p
            • Svex-select
            • Svex-alist
            • Svex-equiv
            • Svexlist
            • Svex-call
            • Fnsym
              • Fnsym-equiv
                • Fnsym-p
                • Fnsym-fix
              • Svex-quote
              • Svex-var
              • Svcall-rw
              • Svcall
              • Svex-kind
              • Svcall*
              • Svex-fix
              • Svex-count
              • Svex-1z
              • Svex-1x
              • Svex-z
              • Svex-x
            • Bit-blasting
            • Functions
            • 4vmask
            • Why-infinite-width
            • Svex-vars
            • Evaluation
            • Values
          • Symbolic-test-vector
          • Vl-to-svex
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Fnsym

    Fnsym-equiv

    Equivalence relation for fnsyms.

    Definitions and Theorems

    Function: fnsym-equiv$inline

    (defun fnsym-equiv$inline (x y)
      (declare (xargs :guard (and (fnsym-p x) (fnsym-p y))))
      (eq (fnsym-fix x) (fnsym-fix y)))

    Theorem: fnsym-equiv-is-an-equivalence

    (defthm fnsym-equiv-is-an-equivalence
      (and (booleanp (fnsym-equiv x y))
           (fnsym-equiv x x)
           (implies (fnsym-equiv x y)
                    (fnsym-equiv y x))
           (implies (and (fnsym-equiv x y)
                         (fnsym-equiv y z))
                    (fnsym-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: fnsym-equiv-implies-equal-fnsym-fix-1

    (defthm fnsym-equiv-implies-equal-fnsym-fix-1
      (implies (fnsym-equiv x x-equiv)
               (equal (fnsym-fix x)
                      (fnsym-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: fnsym-fix-under-fnsym-equiv

    (defthm fnsym-fix-under-fnsym-equiv
      (fnsym-equiv (fnsym-fix x) x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-fnsym-fix-1-forward-to-fnsym-equiv

    (defthm equal-of-fnsym-fix-1-forward-to-fnsym-equiv
      (implies (equal (fnsym-fix x) y)
               (fnsym-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-fnsym-fix-2-forward-to-fnsym-equiv

    (defthm equal-of-fnsym-fix-2-forward-to-fnsym-equiv
      (implies (equal x (fnsym-fix y))
               (fnsym-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: fnsym-equiv-of-fnsym-fix-1-forward

    (defthm fnsym-equiv-of-fnsym-fix-1-forward
      (implies (fnsym-equiv (fnsym-fix x) y)
               (fnsym-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: fnsym-equiv-of-fnsym-fix-2-forward

    (defthm fnsym-equiv-of-fnsym-fix-2-forward
      (implies (fnsym-equiv x (fnsym-fix y))
               (fnsym-equiv x y))
      :rule-classes :forward-chaining)