• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • Soft
        • C
        • Bv
        • Imp-language
        • Event-macros
        • Java
        • Bitcoin
        • Ethereum
        • Yul
        • Zcash
        • ACL2-programming-language
        • Prime-fields
        • Json
        • Syntheto
        • File-io-light
        • Cryptography
        • Number-theory
          • Tonelli-shanks-modular-sqrt-algorithm
          • Defprime
          • Dm::primep
          • Defprime-alias
          • Prime
            • Has-square-root?
            • Prime-fix
            • Secp256k1-group-prime
            • Secp256k1-field-prime
            • Jubjub-subgroup-prime
            • Bn-254-group-prime
            • Bls12-381-scalar-field-prime
            • Baby-jubjub-subgroup-prime
            • Goldilocks-prime
          • Lists-light
          • Axe
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Number-theory

    Prime

    Fixtype of prime numbers.

    Definitions and Theorems

    Function: prime-equiv$inline

    (defun prime-equiv$inline (x y)
      (declare (xargs :guard (and (dm::primep x) (dm::primep y))))
      (equal (prime-fix x) (prime-fix y)))

    Theorem: prime-equiv-is-an-equivalence

    (defthm prime-equiv-is-an-equivalence
      (and (booleanp (prime-equiv x y))
           (prime-equiv x x)
           (implies (prime-equiv x y)
                    (prime-equiv y x))
           (implies (and (prime-equiv x y)
                         (prime-equiv y z))
                    (prime-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: prime-equiv-implies-equal-prime-fix-1

    (defthm prime-equiv-implies-equal-prime-fix-1
      (implies (prime-equiv x x-equiv)
               (equal (prime-fix x)
                      (prime-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: prime-fix-under-prime-equiv

    (defthm prime-fix-under-prime-equiv
      (prime-equiv (prime-fix x) x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-prime-fix-1-forward-to-prime-equiv

    (defthm equal-of-prime-fix-1-forward-to-prime-equiv
      (implies (equal (prime-fix x) y)
               (prime-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-prime-fix-2-forward-to-prime-equiv

    (defthm equal-of-prime-fix-2-forward-to-prime-equiv
      (implies (equal x (prime-fix y))
               (prime-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: prime-equiv-of-prime-fix-1-forward

    (defthm prime-equiv-of-prime-fix-1-forward
      (implies (prime-equiv (prime-fix x) y)
               (prime-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: prime-equiv-of-prime-fix-2-forward

    (defthm prime-equiv-of-prime-fix-2-forward
      (implies (prime-equiv x (prime-fix y))
               (prime-equiv x y))
      :rule-classes :forward-chaining)