• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • Soft
        • C
        • Bv
        • Imp-language
          • Semantics
            • Step
            • Write-var
            • Outcome
              • Outcome-case
              • Outcome-fix
                • Outcome-equiv
                • Outcome-terminated
                • Outcomep
                • Outcome-nonterminating
                • Outcome-kind
              • Beval
              • Read-var
              • Config
              • Terminatingp
              • Aeval
              • Step*
              • Stepn
              • Env
            • Abstract-syntax
            • Interpreter
          • Event-macros
          • Java
          • Bitcoin
          • Ethereum
          • Yul
          • Zcash
          • ACL2-programming-language
          • Prime-fields
          • Json
          • Syntheto
          • File-io-light
          • Cryptography
          • Number-theory
          • Lists-light
          • Axe
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Outcome

    Outcome-fix

    Fixing function for outcome structures.

    Signature
    (outcome-fix x) → new-x
    Arguments
    x — Guard (outcomep x).
    Returns
    new-x — Type (outcomep new-x).

    Definitions and Theorems

    Function: outcome-fix$inline

    (defun outcome-fix$inline (x)
     (declare (xargs :guard (outcomep x)))
     (let ((__function__ 'outcome-fix))
       (declare (ignorable __function__))
       (mbe :logic
            (case (outcome-kind x)
              (:terminated (b* ((env (env-fix (std::da-nth 0 (cdr x)))))
                             (cons :terminated (list env))))
              (:nonterminating (cons :nonterminating (list))))
            :exec x)))

    Theorem: outcomep-of-outcome-fix

    (defthm outcomep-of-outcome-fix
      (b* ((new-x (outcome-fix$inline x)))
        (outcomep new-x))
      :rule-classes :rewrite)

    Theorem: outcome-fix-when-outcomep

    (defthm outcome-fix-when-outcomep
      (implies (outcomep x)
               (equal (outcome-fix x) x)))

    Function: outcome-equiv$inline

    (defun outcome-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (outcomep acl2::x)
                                  (outcomep acl2::y))))
      (equal (outcome-fix acl2::x)
             (outcome-fix acl2::y)))

    Theorem: outcome-equiv-is-an-equivalence

    (defthm outcome-equiv-is-an-equivalence
      (and (booleanp (outcome-equiv x y))
           (outcome-equiv x x)
           (implies (outcome-equiv x y)
                    (outcome-equiv y x))
           (implies (and (outcome-equiv x y)
                         (outcome-equiv y z))
                    (outcome-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: outcome-equiv-implies-equal-outcome-fix-1

    (defthm outcome-equiv-implies-equal-outcome-fix-1
      (implies (outcome-equiv acl2::x x-equiv)
               (equal (outcome-fix acl2::x)
                      (outcome-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: outcome-fix-under-outcome-equiv

    (defthm outcome-fix-under-outcome-equiv
      (outcome-equiv (outcome-fix acl2::x)
                     acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-outcome-fix-1-forward-to-outcome-equiv

    (defthm equal-of-outcome-fix-1-forward-to-outcome-equiv
      (implies (equal (outcome-fix acl2::x) acl2::y)
               (outcome-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-outcome-fix-2-forward-to-outcome-equiv

    (defthm equal-of-outcome-fix-2-forward-to-outcome-equiv
      (implies (equal acl2::x (outcome-fix acl2::y))
               (outcome-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: outcome-equiv-of-outcome-fix-1-forward

    (defthm outcome-equiv-of-outcome-fix-1-forward
      (implies (outcome-equiv (outcome-fix acl2::x)
                              acl2::y)
               (outcome-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: outcome-equiv-of-outcome-fix-2-forward

    (defthm outcome-equiv-of-outcome-fix-2-forward
      (implies (outcome-equiv acl2::x (outcome-fix acl2::y))
               (outcome-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: outcome-kind$inline-of-outcome-fix-x

    (defthm outcome-kind$inline-of-outcome-fix-x
      (equal (outcome-kind$inline (outcome-fix x))
             (outcome-kind$inline x)))

    Theorem: outcome-kind$inline-outcome-equiv-congruence-on-x

    (defthm outcome-kind$inline-outcome-equiv-congruence-on-x
      (implies (outcome-equiv x x-equiv)
               (equal (outcome-kind$inline x)
                      (outcome-kind$inline x-equiv)))
      :rule-classes :congruence)

    Theorem: consp-of-outcome-fix

    (defthm consp-of-outcome-fix
      (consp (outcome-fix x))
      :rule-classes :type-prescription)