• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • Soft
        • C
        • Bv
        • Imp-language
        • Event-macros
        • Java
        • Bitcoin
        • Ethereum
        • Yul
        • Zcash
        • ACL2-programming-language
        • Prime-fields
        • Json
        • Syntheto
        • File-io-light
        • Cryptography
          • R1cs
          • Interfaces
          • Sha-2
          • Keccak
          • Kdf
          • Mimc
          • Padding
          • Hmac
          • Elliptic-curves
            • Secp256k1-attachment
            • Twisted-edwards
            • Montgomery
            • Short-weierstrass-curves
            • Birational-montgomery-twisted-edwards
            • Has-square-root?-satisfies-pfield-squarep
            • Secp256k1
            • Secp256k1-domain-parameters
            • Secp256k1-types
            • Pfield-squarep
            • Secp256k1-interface
            • Prime-field-extra-rules
            • Points
              • Pointp
              • Point-in-pxp-p
              • Points-fty
                • Point-finite
                  • Point
                  • Point-kind
                  • Point-finite->y
                  • Point-finite->x
                  • Point-infinite
                  • Point-fix
            • Attachments
            • Elliptic-curve-digital-signature-algorithm
          • Number-theory
          • Lists-light
          • Axe
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Points-fty

    Point-finite

    Build a finite elliptic curve point.

    Signature
    (point-finite x y) → p
    Arguments
    x — Guard (natp x).
    y — Guard (natp y).
    Returns
    p — Type (pointp p).

    Definitions and Theorems

    Function: point-finite

    (defun point-finite (x y)
      (declare (xargs :guard (and (natp x) (natp y))))
      (let ((acl2::__function__ 'point-finite))
        (declare (ignorable acl2::__function__))
        (b* ((x (mbe :logic (nfix x) :exec x))
             (y (mbe :logic (nfix y) :exec y)))
          (cons x y))))

    Theorem: pointp-of-point-finite

    (defthm pointp-of-point-finite
      (b* ((p (point-finite x y))) (pointp p))
      :rule-classes :rewrite)

    Theorem: point-kind-of-point-finite

    (defthm point-kind-of-point-finite
      (equal (point-kind (point-finite x y))
             :finite))

    Theorem: point-finite->x-of-point-finite

    (defthm point-finite->x-of-point-finite
      (equal (point-finite->x (point-finite x y))
             (nfix x)))

    Theorem: point-finite->y-of-point-finite

    (defthm point-finite->y-of-point-finite
      (equal (point-finite->y (point-finite x y))
             (nfix y)))

    Theorem: point-finite-of-point-finite->x/y

    (defthm point-finite-of-point-finite->x/y
      (implies (equal (point-kind p) :finite)
               (equal (point-finite (point-finite->x p)
                                    (point-finite->y p))
                      (point-fix p))))

    Theorem: point-fix-when-finite

    (defthm point-fix-when-finite
      (implies (equal (point-kind p) :finite)
               (equal (point-fix p)
                      (point-finite (point-finite->x p)
                                    (point-finite->y p)))))

    Theorem: equal-of-point-finite

    (defthm equal-of-point-finite
      (equal (equal (point-finite x y) p)
             (and (pointp p)
                  (equal (point-kind p) :finite)
                  (equal (point-finite->x p) (nfix x))
                  (equal (point-finite->y p) (nfix y)))))

    Theorem: point-finite-of-nfix-x

    (defthm point-finite-of-nfix-x
      (equal (point-finite (nfix x) y)
             (point-finite x y)))

    Theorem: point-finite-nat-equiv-congruence-on-x

    (defthm point-finite-nat-equiv-congruence-on-x
      (implies (nat-equiv x x-equiv)
               (equal (point-finite x y)
                      (point-finite x-equiv y)))
      :rule-classes :congruence)

    Theorem: point-finite-of-nfix-y

    (defthm point-finite-of-nfix-y
      (equal (point-finite x (nfix y))
             (point-finite x y)))

    Theorem: point-finite-nat-equiv-congruence-on-y

    (defthm point-finite-nat-equiv-congruence-on-y
      (implies (nat-equiv y y-equiv)
               (equal (point-finite x y)
                      (point-finite x y-equiv)))
      :rule-classes :congruence)