• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • Soft
        • C
        • Bv
        • Imp-language
        • Event-macros
        • Java
        • Bitcoin
        • Ethereum
        • Yul
        • Zcash
        • ACL2-programming-language
        • Prime-fields
        • Json
        • Syntheto
        • File-io-light
        • Cryptography
        • Number-theory
        • Lists-light
        • Axe
        • Builtins
        • Solidity
          • Values
            • Integer-values
              • Integer-operations
              • Bit-size
              • Uint
              • Int
                • Intp
                • Int-fix
                • Make-int
                • Int-equiv
                  • Change-int
                  • Int->value
                  • Int->size
              • Boolean-values
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Int

    Int-equiv

    Basic equivalence relation for int structures.

    Definitions and Theorems

    Function: int-equiv$inline

    (defun int-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (intp acl2::x) (intp acl2::y))))
      (equal (int-fix acl2::x)
             (int-fix acl2::y)))

    Theorem: int-equiv-is-an-equivalence

    (defthm int-equiv-is-an-equivalence
      (and (booleanp (int-equiv x y))
           (int-equiv x x)
           (implies (int-equiv x y)
                    (int-equiv y x))
           (implies (and (int-equiv x y) (int-equiv y z))
                    (int-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: int-equiv-implies-equal-int-fix-1

    (defthm int-equiv-implies-equal-int-fix-1
      (implies (int-equiv acl2::x x-equiv)
               (equal (int-fix acl2::x)
                      (int-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: int-fix-under-int-equiv

    (defthm int-fix-under-int-equiv
      (int-equiv (int-fix acl2::x) acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-int-fix-1-forward-to-int-equiv

    (defthm equal-of-int-fix-1-forward-to-int-equiv
      (implies (equal (int-fix acl2::x) acl2::y)
               (int-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-int-fix-2-forward-to-int-equiv

    (defthm equal-of-int-fix-2-forward-to-int-equiv
      (implies (equal acl2::x (int-fix acl2::y))
               (int-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: int-equiv-of-int-fix-1-forward

    (defthm int-equiv-of-int-fix-1-forward
      (implies (int-equiv (int-fix acl2::x) acl2::y)
               (int-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: int-equiv-of-int-fix-2-forward

    (defthm int-equiv-of-int-fix-2-forward
      (implies (int-equiv acl2::x (int-fix acl2::y))
               (int-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)