• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • Soft
        • C
        • Bv
        • Imp-language
          • Semantics
          • Abstract-syntax
            • Aexp
              • Aexp-case
              • Aexp-fix
                • Aexpp
                • Aexp-count
                • Aexp-equiv
                • Aexp-mul
                • Aexp-add
                • Aexp-var
                • Aexp-const
                • Aexp-kind
              • Bexp
              • Comm
              • Comm-list
              • Command-fixtypes
            • Interpreter
          • Event-macros
          • Java
          • Bitcoin
          • Ethereum
          • Yul
          • Zcash
          • ACL2-programming-language
          • Prime-fields
          • Json
          • Syntheto
          • File-io-light
          • Cryptography
          • Number-theory
          • Lists-light
          • Axe
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Aexp

    Aexp-fix

    Fixing function for aexp structures.

    Signature
    (aexp-fix x) → new-x
    Arguments
    x — Guard (aexpp x).
    Returns
    new-x — Type (aexpp new-x).

    Definitions and Theorems

    Function: aexp-fix$inline

    (defun aexp-fix$inline (x)
      (declare (xargs :guard (aexpp x)))
      (let ((__function__ 'aexp-fix))
        (declare (ignorable __function__))
        (mbe :logic
             (case (aexp-kind x)
               (:const (b* ((value (ifix (std::da-nth 0 (cdr x)))))
                         (cons :const (list value))))
               (:var (b* ((name (str-fix (std::da-nth 0 (cdr x)))))
                       (cons :var (list name))))
               (:add (b* ((left (aexp-fix (std::da-nth 0 (cdr x))))
                          (right (aexp-fix (std::da-nth 1 (cdr x)))))
                       (cons :add (list left right))))
               (:mul (b* ((left (aexp-fix (std::da-nth 0 (cdr x))))
                          (right (aexp-fix (std::da-nth 1 (cdr x)))))
                       (cons :mul (list left right)))))
             :exec x)))

    Theorem: aexpp-of-aexp-fix

    (defthm aexpp-of-aexp-fix
      (b* ((new-x (aexp-fix$inline x)))
        (aexpp new-x))
      :rule-classes :rewrite)

    Theorem: aexp-fix-when-aexpp

    (defthm aexp-fix-when-aexpp
      (implies (aexpp x)
               (equal (aexp-fix x) x)))

    Function: aexp-equiv$inline

    (defun aexp-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (aexpp acl2::x) (aexpp acl2::y))))
      (equal (aexp-fix acl2::x)
             (aexp-fix acl2::y)))

    Theorem: aexp-equiv-is-an-equivalence

    (defthm aexp-equiv-is-an-equivalence
      (and (booleanp (aexp-equiv x y))
           (aexp-equiv x x)
           (implies (aexp-equiv x y)
                    (aexp-equiv y x))
           (implies (and (aexp-equiv x y) (aexp-equiv y z))
                    (aexp-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: aexp-equiv-implies-equal-aexp-fix-1

    (defthm aexp-equiv-implies-equal-aexp-fix-1
      (implies (aexp-equiv acl2::x x-equiv)
               (equal (aexp-fix acl2::x)
                      (aexp-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: aexp-fix-under-aexp-equiv

    (defthm aexp-fix-under-aexp-equiv
      (aexp-equiv (aexp-fix acl2::x) acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-aexp-fix-1-forward-to-aexp-equiv

    (defthm equal-of-aexp-fix-1-forward-to-aexp-equiv
      (implies (equal (aexp-fix acl2::x) acl2::y)
               (aexp-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-aexp-fix-2-forward-to-aexp-equiv

    (defthm equal-of-aexp-fix-2-forward-to-aexp-equiv
      (implies (equal acl2::x (aexp-fix acl2::y))
               (aexp-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: aexp-equiv-of-aexp-fix-1-forward

    (defthm aexp-equiv-of-aexp-fix-1-forward
      (implies (aexp-equiv (aexp-fix acl2::x) acl2::y)
               (aexp-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: aexp-equiv-of-aexp-fix-2-forward

    (defthm aexp-equiv-of-aexp-fix-2-forward
      (implies (aexp-equiv acl2::x (aexp-fix acl2::y))
               (aexp-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: aexp-kind$inline-of-aexp-fix-x

    (defthm aexp-kind$inline-of-aexp-fix-x
      (equal (aexp-kind$inline (aexp-fix x))
             (aexp-kind$inline x)))

    Theorem: aexp-kind$inline-aexp-equiv-congruence-on-x

    (defthm aexp-kind$inline-aexp-equiv-congruence-on-x
      (implies (aexp-equiv x x-equiv)
               (equal (aexp-kind$inline x)
                      (aexp-kind$inline x-equiv)))
      :rule-classes :congruence)

    Theorem: consp-of-aexp-fix

    (defthm consp-of-aexp-fix
      (consp (aexp-fix x))
      :rule-classes :type-prescription)