• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • Soft
        • C
        • Bv
        • Imp-language
          • Semantics
          • Abstract-syntax
            • Aexp
            • Bexp
              • Bexp-case
              • Bexp-fix
                • Bexpp
                • Bexp-count
                • Bexp-equiv
                • Bexp-less
                • Bexp-equal
                • Bexp-and
                • Bexp-const
                • Bexp-not
                • Bexp-kind
              • Comm
              • Comm-list
              • Command-fixtypes
            • Interpreter
          • Event-macros
          • Java
          • Bitcoin
          • Ethereum
          • Yul
          • Zcash
          • ACL2-programming-language
          • Prime-fields
          • Json
          • Syntheto
          • File-io-light
          • Cryptography
          • Number-theory
          • Lists-light
          • Axe
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Bexp

    Bexp-fix

    Fixing function for bexp structures.

    Signature
    (bexp-fix x) → new-x
    Arguments
    x — Guard (bexpp x).
    Returns
    new-x — Type (bexpp new-x).

    Definitions and Theorems

    Function: bexp-fix$inline

    (defun bexp-fix$inline (x)
     (declare (xargs :guard (bexpp x)))
     (let ((__function__ 'bexp-fix))
      (declare (ignorable __function__))
      (mbe
        :logic
        (case (bexp-kind x)
          (:const (b* ((value (acl2::bool-fix (std::da-nth 0 (cdr x)))))
                    (cons :const (list value))))
          (:equal (b* ((left (aexp-fix (std::da-nth 0 (cdr x))))
                       (right (aexp-fix (std::da-nth 1 (cdr x)))))
                    (cons :equal (list left right))))
          (:less (b* ((left (aexp-fix (std::da-nth 0 (cdr x))))
                      (right (aexp-fix (std::da-nth 1 (cdr x)))))
                   (cons :less (list left right))))
          (:not (b* ((arg (bexp-fix (std::da-nth 0 (cdr x)))))
                  (cons :not (list arg))))
          (:and (b* ((left (bexp-fix (std::da-nth 0 (cdr x))))
                     (right (bexp-fix (std::da-nth 1 (cdr x)))))
                  (cons :and (list left right)))))
        :exec x)))

    Theorem: bexpp-of-bexp-fix

    (defthm bexpp-of-bexp-fix
      (b* ((new-x (bexp-fix$inline x)))
        (bexpp new-x))
      :rule-classes :rewrite)

    Theorem: bexp-fix-when-bexpp

    (defthm bexp-fix-when-bexpp
      (implies (bexpp x)
               (equal (bexp-fix x) x)))

    Function: bexp-equiv$inline

    (defun bexp-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (bexpp acl2::x) (bexpp acl2::y))))
      (equal (bexp-fix acl2::x)
             (bexp-fix acl2::y)))

    Theorem: bexp-equiv-is-an-equivalence

    (defthm bexp-equiv-is-an-equivalence
      (and (booleanp (bexp-equiv x y))
           (bexp-equiv x x)
           (implies (bexp-equiv x y)
                    (bexp-equiv y x))
           (implies (and (bexp-equiv x y) (bexp-equiv y z))
                    (bexp-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: bexp-equiv-implies-equal-bexp-fix-1

    (defthm bexp-equiv-implies-equal-bexp-fix-1
      (implies (bexp-equiv acl2::x x-equiv)
               (equal (bexp-fix acl2::x)
                      (bexp-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: bexp-fix-under-bexp-equiv

    (defthm bexp-fix-under-bexp-equiv
      (bexp-equiv (bexp-fix acl2::x) acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-bexp-fix-1-forward-to-bexp-equiv

    (defthm equal-of-bexp-fix-1-forward-to-bexp-equiv
      (implies (equal (bexp-fix acl2::x) acl2::y)
               (bexp-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-bexp-fix-2-forward-to-bexp-equiv

    (defthm equal-of-bexp-fix-2-forward-to-bexp-equiv
      (implies (equal acl2::x (bexp-fix acl2::y))
               (bexp-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: bexp-equiv-of-bexp-fix-1-forward

    (defthm bexp-equiv-of-bexp-fix-1-forward
      (implies (bexp-equiv (bexp-fix acl2::x) acl2::y)
               (bexp-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: bexp-equiv-of-bexp-fix-2-forward

    (defthm bexp-equiv-of-bexp-fix-2-forward
      (implies (bexp-equiv acl2::x (bexp-fix acl2::y))
               (bexp-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: bexp-kind$inline-of-bexp-fix-x

    (defthm bexp-kind$inline-of-bexp-fix-x
      (equal (bexp-kind$inline (bexp-fix x))
             (bexp-kind$inline x)))

    Theorem: bexp-kind$inline-bexp-equiv-congruence-on-x

    (defthm bexp-kind$inline-bexp-equiv-congruence-on-x
      (implies (bexp-equiv x x-equiv)
               (equal (bexp-kind$inline x)
                      (bexp-kind$inline x-equiv)))
      :rule-classes :congruence)

    Theorem: consp-of-bexp-fix

    (defthm consp-of-bexp-fix
      (consp (bexp-fix x))
      :rule-classes :type-prescription)