• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Math
      • 100-theorems
      • Arithmetic
      • Bit-vectors
        • Sparseint
        • Bitops
        • Bv
        • Ihs
          • Logops-definitions
          • Math-lemmas
          • Ihs-theories
          • Ihs-init
          • Logops
            • Logops-lemmas
              • Logops-recursive-definitions-theory
              • Ihs/logbitp-lemmas
              • Ihs/logtail-lemmas
              • Ihs/loghead-lemmas
              • Ihs/logrpl-lemmas
              • Ihs/logand-lemmas
              • Ihs/logapp-lemmas
              • Ihs/logcar-lemmas
              • Ihs/integer-length-lemmas
              • Ihs/unsigned-byte-p-lemmas
              • Ihs/logcons-lemmas
              • Signed-byte-p-logops
              • Ihs/logxor-lemmas
              • Ihs/logior-lemmas
              • Ihs/logext-lemmas
              • Ihs/logextu-lemmas
              • Ihs/signed-byte-p-lemmas
              • Ihs/lognotu-lemmas
              • Ihs/lognot-lemmas
                • Ihs/logmaskp-lemmas
                • Ihs/ash-lemmas
                • Logops-lemmas-theory
                • Ihs/wrb-lemmas
                • Ihs/logite-lemmas
          • Rtl
        • Algebra
      • Testing-utilities
    • Lognot
    • Logops-lemmas

    Ihs/lognot-lemmas

    Lemmas about lognot from the logops-lemmas book.

    Definitions and Theorems

    Theorem: lognot-lognot

    (defthm lognot-lognot
      (implies (case-split (integerp i))
               (equal (lognot (lognot i)) i)))

    Theorem: cancel-equal-lognot

    (defthm cancel-equal-lognot
      (equal (equal (lognot i) (lognot j))
             (equal (ifix i) (ifix j)))
      :rule-classes
      ((:rewrite)
       (:rewrite
            :corollary (implies (and (syntaxp (constant-syntaxp j))
                                     (integerp j))
                                (equal (equal (lognot i) j)
                                       (equal (ifix i) (lognot j)))))))