• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Math
      • 100-theorems
      • Arithmetic
      • Bit-vectors
        • Sparseint
        • Bitops
        • Bv
        • Ihs
          • Logops-definitions
          • Math-lemmas
          • Ihs-theories
          • Ihs-init
          • Logops
            • Logops-lemmas
              • Logops-recursive-definitions-theory
              • Ihs/logbitp-lemmas
              • Ihs/logtail-lemmas
              • Ihs/loghead-lemmas
              • Ihs/logrpl-lemmas
              • Ihs/logand-lemmas
              • Ihs/logapp-lemmas
              • Ihs/logcar-lemmas
                • Ihs/integer-length-lemmas
                • Ihs/unsigned-byte-p-lemmas
                • Ihs/logcons-lemmas
                • Signed-byte-p-logops
                • Ihs/logxor-lemmas
                • Ihs/logior-lemmas
                • Ihs/logext-lemmas
                • Ihs/logextu-lemmas
                • Ihs/signed-byte-p-lemmas
                • Ihs/lognotu-lemmas
                • Ihs/lognot-lemmas
                • Ihs/logmaskp-lemmas
                • Ihs/ash-lemmas
                • Logops-lemmas-theory
                • Ihs/wrb-lemmas
                • Ihs/logite-lemmas
          • Rtl
        • Algebra
      • Testing-utilities
    • Logcar
    • Logops-lemmas

    Ihs/logcar-lemmas

    Lemmas about logcar from the logops-lemmas book.

    Definitions and Theorems

    Theorem: logcar-2*i

    (defthm logcar-2*i
      (implies (integerp i)
               (equal (logcar (* 2 i)) 0)))

    Theorem: logcar-i+2*j

    (defthm logcar-i+2*j
      (implies (and (integerp i) (integerp j))
               (and (equal (logcar (+ i (* 2 j)))
                           (logcar i))
                    (equal (logcar (+ (* 2 j) i))
                           (logcar i)))))

    Theorem: logcdr-2*i

    (defthm logcdr-2*i
      (implies (integerp i)
               (equal (logcdr (* 2 i)) i)))

    Theorem: logcdr-i+2*j

    (defthm logcdr-i+2*j
      (implies (and (integerp i) (integerp j))
               (and (equal (logcdr (+ i (* 2 j)))
                           (+ (logcdr i) j))
                    (equal (logcdr (+ (* 2 j) i))
                           (+ (logcdr i) j)))))

    Theorem: logcar-loghead

    (defthm logcar-loghead
      (implies (loghead-guard size i)
               (equal (logcar (loghead size i))
                      (if (equal size 0) 0 (logcar i)))))

    Theorem: logcar-logapp

    (defthm logcar-logapp
      (implies (logapp-guard size i j)
               (equal (logcar (logapp size i j))
                      (if (equal size 0)
                          (logcar j)
                        (logcar i)))))

    Theorem: logcar-logrpl

    (defthm logcar-logrpl
      (implies (logrpl-guard size i j)
               (equal (logcar (logrpl size i j))
                      (if (equal size 0)
                          (logcar j)
                        (logcar i)))))