• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Math
      • 100-theorems
      • Arithmetic
      • Bit-vectors
        • Sparseint
        • Bitops
        • Bv
        • Ihs
          • Logops-definitions
          • Math-lemmas
          • Ihs-theories
          • Ihs-init
          • Logops
            • Logops-lemmas
              • Logops-recursive-definitions-theory
              • Ihs/logbitp-lemmas
              • Ihs/logtail-lemmas
              • Ihs/loghead-lemmas
                • Ihs/logrpl-lemmas
                • Ihs/logand-lemmas
                • Ihs/logapp-lemmas
                • Ihs/logcar-lemmas
                • Ihs/integer-length-lemmas
                • Ihs/unsigned-byte-p-lemmas
                • Ihs/logcons-lemmas
                • Signed-byte-p-logops
                • Ihs/logxor-lemmas
                • Ihs/logior-lemmas
                • Ihs/logext-lemmas
                • Ihs/logextu-lemmas
                • Ihs/signed-byte-p-lemmas
                • Ihs/lognotu-lemmas
                • Ihs/lognot-lemmas
                • Ihs/logmaskp-lemmas
                • Ihs/ash-lemmas
                • Logops-lemmas-theory
                • Ihs/wrb-lemmas
                • Ihs/logite-lemmas
          • Rtl
        • Algebra
      • Testing-utilities
    • Loghead
    • Logops-lemmas

    Ihs/loghead-lemmas

    Lemmas about loghead from the logops-lemmas book.

    Definitions and Theorems

    Theorem: loghead-identity

    (defthm loghead-identity
      (implies (unsigned-byte-p size i)
               (equal (loghead size i) i)))

    Theorem: loghead-loghead

    (defthm loghead-loghead
      (implies (and (>= size1 0)
                    (integerp size1)
                    (loghead-guard size i))
               (equal (loghead size1 (loghead size i))
                      (if (< size1 size)
                          (loghead size1 i)
                        (loghead size i)))))

    Theorem: loghead-0-i

    (defthm loghead-0-i
      (implies (integerp i)
               (equal (loghead 0 i) 0)))

    Theorem: loghead-size-0

    (defthm loghead-size-0
      (implies (and (integerp size) (>= size 0))
               (equal (loghead size 0) 0)))

    Theorem: loghead-leq

    (defthm loghead-leq
      (implies (and (>= i 0) (loghead-guard size i))
               (<= (loghead size i) i))
      :rule-classes ((:linear :trigger-terms ((loghead size i)))))

    Theorem: loghead-logapp

    (defthm loghead-logapp
      (implies (and (<= size1 size)
                    (force (>= size1 0))
                    (force (integerp size1))
                    (logapp-guard size i j))
               (equal (loghead size1 (logapp size i j))
                      (loghead size1 i))))

    Theorem: loghead-logrpl

    (defthm loghead-logrpl
      (implies (and (logrpl-guard size1 i j)
                    (force (integerp size))
                    (force (>= size 0)))
               (equal (loghead size (logrpl size1 i j))
                      (if (< size1 size)
                          (logrpl size1 i (loghead size j))
                        (loghead size i)))))

    Theorem: bitp-loghead-1

    (defthm bitp-loghead-1
      (bitp (loghead 1 i))
      :rule-classes :type-prescription)

    Theorem: loghead-+-cancel-0

    (defthm loghead-+-cancel-0
      (implies (and (force (integerp j))
                    (loghead-guard size i))
               (equal (equal (loghead size (+ i j))
                             (loghead size i))
                      (equal (loghead size j) 0))))

    Theorem: loghead-+-cancel

    (defthm loghead-+-cancel
      (implies (and (force (integerp size))
                    (>= size 0)
                    (force (integerp i))
                    (force (integerp j))
                    (force (integerp k)))
               (equal (equal (loghead size (+ i j))
                             (loghead size (+ i k)))
                      (equal (loghead size j)
                             (loghead size k)))))

    Theorem: loghead-+-loghead

    (defthm loghead-+-loghead
      (implies (and (force (integerp size))
                    (>= size 0)
                    (force (integerp i))
                    (force (integerp j)))
               (equal (loghead size (+ i (loghead size j)))
                      (loghead size (+ i j)))))