• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Math
      • 100-theorems
      • Arithmetic
      • Bit-vectors
        • Sparseint
        • Bitops
        • Bv
        • Ihs
          • Logops-definitions
          • Math-lemmas
          • Ihs-theories
          • Ihs-init
          • Logops
            • Logops-lemmas
              • Logops-recursive-definitions-theory
              • Ihs/logbitp-lemmas
              • Ihs/logtail-lemmas
              • Ihs/loghead-lemmas
              • Ihs/logrpl-lemmas
              • Ihs/logand-lemmas
              • Ihs/logapp-lemmas
              • Ihs/logcar-lemmas
              • Ihs/integer-length-lemmas
              • Ihs/unsigned-byte-p-lemmas
              • Ihs/logcons-lemmas
              • Signed-byte-p-logops
              • Ihs/logxor-lemmas
                • Ihs/logior-lemmas
                • Ihs/logext-lemmas
                • Ihs/logextu-lemmas
                • Ihs/signed-byte-p-lemmas
                • Ihs/lognotu-lemmas
                • Ihs/lognot-lemmas
                • Ihs/logmaskp-lemmas
                • Ihs/ash-lemmas
                • Logops-lemmas-theory
                • Ihs/wrb-lemmas
                • Ihs/logite-lemmas
          • Rtl
        • Algebra
      • Testing-utilities
    • Logxor
    • Logops-lemmas

    Ihs/logxor-lemmas

    Lemmas about logxor from the logops-lemmas book.

    Definitions and Theorems

    Theorem: commutativity-of-logxor

    (defthm commutativity-of-logxor
      (equal (logxor i j) (logxor j i)))

    Theorem: simplify-logxor

    (defthm simplify-logxor
      (and (equal (logxor 0 i) (ifix i))
           (equal (logxor -1 i) (lognot i))))

    Theorem: logxor-=-0

    (defthm logxor-=-0
      (implies (and (force (integerp i))
                    (force (integerp j)))
               (equal (equal (logxor i j) 0)
                      (equal i j))))

    Theorem: unsigned-byte-p-logxor

    (defthm unsigned-byte-p-logxor
      (implies (and (unsigned-byte-p size i)
                    (unsigned-byte-p size j)
                    (force (integerp i))
                    (force (integerp j)))
               (unsigned-byte-p size (logxor i j))))